Гидростатические направляющие, конструкции, эксплуатация
Гидростатические направляющие более широко распространены в металлорежущих станках. Они обеспечивают жидкостную смазку при любых скоростях скольжения, а значит, и равномерность, и высокую чувствительность точных исполнительных движений. Недостатком гидростатических направляющих является сложность системы смазывания и необходимость специальных устройств для фиксации перемещаемого узла в заданной позиции. Гидростатические направляющие (рис.65) имеют карманы в которые под давлением подается масло. Вытекая наружу через
Грузоподъемная сила, Н, незамкнутой гидростатической опоры с питанием по схеме насос—карман
где Q — расход смазочного материала, протекающего через зазор, который является постоянным для этого типа опор, см3/с; μ — динамическая вязкость, для минеральных масел μ = 1― 100 мПа·с; h —величина зазора, см; F —площадь опоры, см2 (отдельной опорой будем считать участок F = LB, см. рис. 17.16); cf, Сg —коэффициенты, зависящие от геометрических параметров опоры и кармана, для симметричной прямоугольной опоры (2.17)
(3.17)
где L, В — соответственно длина и ширина опоры; l, b — длина и ширина кармана. Жесткость гидростатической опоры с постоянным расходом
где знак минус означает, что с увеличением нагрузки, зазор уменьшается. У незамкнутой гидростатической опоры с питанием от общего насоса через дроссель к каждому карману (см. рис. 17.15, б) расход жидкости через дроссель и щель равен
где рк, рн — соответственно давление в кармане и давление насоса, мПа; R, R др—соответственно сопротивление щели и дросселя. Для гидростатических направляющих применяют в основном. Дроссели типа канала, в которых сопротивление потоку создается за счет трения жидкости о стенки. Такие дроссели меньше засоряются, Так как позволяют увеличить проходное сечение канала, а необходимое сопротивление можно обеспечить за счет его длины, причем Компактность дросселя достигается винтовой формой канала Для дросселей трения с круглым отверстием
а сопротивление щели гидростатической опоры
где l 0, d0 —соответственно длина и диаметр отверстия дросселя, см. Подставив в уравнение (17.31) выражения (17.32) и (17.33), можно получить формулу для определения толщины масляного слоя
где т = рк/рн —характеристика дросселя, 0 < т < 1. Жесткость гидростатической опоры с дроссельной системой питания (8.17) а при оптимальной характеристике дросселя топт = 2/3
Из формул (7.17) и (8.17) видно, что применение дросселей трения обеспечивает независимость толщины масляного слоя h и жесткости j от вязкости масла μ.Это является достоинством дроссельных гидростатических опор, поскольку вязкость масла существенно изменяется из-за нагрева станка при работе. Грузоподъемная сила, Н, замкнутой гидростатической опоры с системой питания насос—карман (см. рис. 65, в)
(11.17)
где h0 — первоначальнаявеличина рабочего зазора; сР (ε, k) и Cj (ε, k) — коэффициенты, определяемые в зависимости от относительного смещения в = (h0 — h1)/h0 и различия в противоположных опорах
(индекс 1 —для основной опоры, а индекс 2 —для замыкающей); обычно 0 < k < 1, а при k = 0 опора превращается в незамкнутую.
Коэффициенты сР (е, k) и Cj (e, k) определяют по выражениям
Замкнутая гидростатическая опора с дроссельным регулированием (рис.65, г) обладает грузоподъемной силой и жесткостью, определяемыми по выражениям (10.17) и (11.17), в которых коэффициенты Ср (в, k) и c, j (в, k) определяют по следующим зависимостям:
(14.17)
Повысить жесткость незамкнутых гидростатических опор можно применяя регуляторы толщины масляного слоя. Примером регулятора, использующего обратную связь по давлению, может служить мембранный регулятор (рис.67, а), принцип действия которого заключается в том, что его сопротивление, зависящее от величины зазора Н, изменяется в соответствии с толщиной щели h при равенстве расходов. Толщина масляного слоя гидростатической опоры с таким регулятором
(15.17)
Подбором жесткости регулятора (используя коэффициенты ) можно изменить жесткостную характеристику опоры. Регуляторы мембранного типа улучшают характеристики незамкнутых гидростатических опор при сравнительно небольшом. Диапазоне изменения внешней нагрузки (примерно до 5 раз), обеспечивая почти постоянное значение толщины смазочного слоя. Расширить диапазон внешних нагрузок во много раз можно путем создания систем автоматического регулирования, в которых осуществляется управление регулятором расхода по сигналу датчика, фиксирующего отклонение движения подвижного узла от идеальной прямой. Своеобразной автоматической системой с регулятором являются гидростатические опоры с внутренним дросселированием (рис.67, б). В качестве дросселя используют участок щели в виде кольца, причем дроссели располагают на противоположной направляющей. Жесткость и грузоподъемная сила таких опор в 1, 5—2 раза больше жесткости обычных гидростатических опор с внешним дросселем постоянного сопротивления. Демпфирование колебаний в гидростатических направляющих значительно выше, чем в направляющих других типов, и характеризуется силой сопротивления, возникающей при сближении I поверхностей с некоторой постоянной скоростью. Для прямоугольных направляющих с карманом демпфирующая сила
а для плоской кольцевой опоры с центральной камерой
где h — начальная (средняя) величина зазора; r1, r2 — соответственно наружный и внутренний радиусы кольцевой опоры. Гидростатические направляющие чувствительны к деформациям и погрешностям изготовления и монтажа, суммарная величина которых для сопряженных деталей не должна превышать примерно одной трети минимальной расчетной толщины щели. Положительным свойством гидростатических опор является способность их в значительной мере усреднять исходные геометрические погрешности сопряженных поверхностей. Разделения трущихся поверхностей в аэростатических направляющих добиваются подачей в карманы воздуха под давлением. В результате между сопряженными поверхностями направляющих образуется воздушная подушка. По конструкции аэростатические направляющие напоминают гидростатические. Рабочую поверхность делят на несколько секций, в которых располагаются карманы. Подвод и распределение воздуха к каждой секции независимые. Для устранения опасности потери устойчивости и возбуждения интенсивных колебаний по принципу пневмомолотка карманы и распределительные канавки делают треугольного профиля и небольшими по объему (рис.68). Аэростатические направляющие работают устойчиво, когда объем воздуха в канавке в 4—5 раз меньше объема воздуха в щели. Исходя из этого, глубина канавки
где В —ширина опоры, мм; h —толщина щели, обычно h = 0, 01 ─ 0, 05 мм
Подъемная сила опоры с одной канавкой
Где l —длина канавки, мм; fp (k) —коэффициент, зависящий от характеристики опоры,
Коэффициент fр (k) при расчете грузоподъемности можно определить по эмпирической формуле
где рк —давление воздуха в канавке, МПа. По условию устойчивости характеристику опоры следует брать в интервале 0, 3 < к < 2. Жесткость незамкнутых аэростатических направляющих можно оценить по приближенной формуле
где р0 — подводимое давление воздуха, МПа. Недостатки аэростатических опор и направляющих, по сравнению с гидростатическими, заключаются в малой нагрузочной способности, невысоком демпфировании колебаний, так как вязкость воздуха на четыре порядка меньше вязкости масла, низкими динамическими характеристиками, склонностью к отказам из-за засорения магистралей и рабочего зазора. Динамические характеристики можно улучшить, применяя аэростатические направляющие закрытого типа, а поднять нагрузочную способность за счет автономной системы питания от отдельного компрессора. Преимущества аэростатических направляющих состоят в том, что они при движении обеспечивают низкий коэффициент трения, а при отключении подачи воздуха очень быстро создается контакт поверхностей с большим трением, обеспечивающим достаточную жесткость фиксации узла станка в заданной позиции. Отпадает Необходимость в фиксирующих устройствах, в которых нуждаются Все это определяет целесообразную область применения аэростатических направляющих. Их используют в прецизионных станках, в которых малы силы резания и необходимо точное позиционирование.
18. Обзор конструкций направляющих с гидродинамической, газовой смазкой. Использование гидро- и аэроразгрузки при перемещении узлов станка по направляющим.
Гидродинамические направляющие отличаются простотой конструкции, хорошо работают лишь при достаточно больших скоростях скольжения, которым соответствуют скорости главного движения (в продольно-строгальных, карусельных станках). Гидродинамический эффект, т. е. эффект всплывания подвижного узла, создается пологими клиновыми скосами между смазочными канавками, выполненными на рабочей поверхности направляющих (рис.69). В образованные таким образом сужающиеся зазоры при движении затягивается смазочный материал, и обеспечивается разделение трущихся поверхностей слоем жидкости. При малой ширине направляющей по сравнению с ее длиной критическая скорость скольжения, м/с, после которой наступает жидкостная смазка,
где Р — общая нагрузка на направляющую, Н; hmin — минимальная толщина смазочного слоя, в зависимости от длины направляющей fmin = 0, 06 ─ 0, 1 мм; μ —динамическая вязкость, мПа·с; L, В — длина и ширина направляющей, мм. Для различных скоростей скольжения и нагрузки существуют свои оптимальные геометрические параметры клинового скоса. Серьезным недостатком гидродинамических направляющих является нарушение жидкостной смазки в периоды разгона и торможения подвижного узла. Гидроразгрузка направляющих с полужидкостной смазкой за счет подачи в разгружающие карманы масла под давлением весьма эффективна для наиболее ответственных направляющих. Подбором давления масла в карманах можно резко уменьшить коэффициент трения, обеспечить высокую долговечность направляющих, а отсутствие всплывания, которое имеет место в гидростатических направляющих, обеспечивает высокую контактную жесткость и надежную фиксацию узла после перестановки. Сила трения в направляющих с гидроразгрузкой (2.18)
где f — коэффициентсмешанного трения; Р0 — сила гидроразгрузки. Сила гидроразгрузки та же, что и для гидростатических направляющих, Р0 = pKFcF; обычно Р0 = 0, 7PN. Комбинация гидростатических и гидродинамических опор целесообразна при большом диапазоне изменения скоростей, что в направляющих встречается редко. Такие опоры применяют для быстроходных шпинделей станков с большим диапазоном регулирования частоты вращения. Комбинации гидростатических опор и направляющих качения целесообразны в отдельных случаях для создания замкнутых гидростатических опор. Подпружиненные катки могут обеспечить надежное замыкание гидростатических опор даже при отсутствии внешней постоянной нагрузки. Сочетание гидростатических направляющих с аэростатическими возможно в случаях, когда аэростатические опоры выполняют вспомогательные функции уплотняющих устройств. Для силового замыкания аэростатические направляющие малопригодны из-за низкого давления в пневмосети. Сжатый воздух используется для разгрузки нетяжелых узлов при вспомогательных их перемещениях. Например, для облегчения перемещения задней бабки в карманы ее напрвляющих подается сжатый воздух, создается воздушная подушка, на которой всплывает задняя бабка
|