Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Динамическая задача оптимизации





 

Под динамическими будем понимать задачи, в которых соотношения между параметрами и целевой функцией выражаются с помощью дифференциальных уравнений или функционалов от функций времени.

В качестве первого примера рассмотрим следующую задачу:

Задан динамический объект, описываемый дифференциальным уравнением;

Входным воздействием на объект является функция времени, содержащая неизвестный параметр :

Функция является кусочнолинейной и её вид определяется следующей таблицей значений;

   
 
   

Требуется найти такое значение параметра входного воздействия , при котором .

Строго говоря, приведенная задача не является задачей на нахождение минимума, но ее можно переформулировать как задачу минмизации при сохранении исходного смысла. Переформулировка заключается в том, что мы потребуем найти такое значение параметра входного воздействия, которое обеспечит минимальное значение . Выполненная переформулировка позволяет использовать при решении поставленной задачи MATLAB – функцию FMINSEARCH. Кроме функции FMINSEARCH будет использована функция ODE45, которая предназначена для численного решения дифференциального уравнения.

Решение поставленной задачи реализовано в MATLAB c помощью следующих скриптов:

Файл Main7.m

%Для определения значения параметра um, программа вызывает

%функцию поиска минимума (fminsearch)

%Предполагается, что функция fmsfun7, на которую ссылается

%fminsearch, вычисляет квадрат состояния объекта,

%соответствующего моменту времени t=4

global t t1 x x0 u

t1=2;

x0=10;

um=fminsearch(@fmsfun7, 1)

plot(t, x, t, u)

 

Файл fmsfun7.m

%Основное назначение программы – вычислить квадрат значения

%состояния объекта, соответствующего моменту времени t=4.

%Для вычисления значений состояния объекта используется

%функция

%ode45 которая реализует метод численного решения

%соответствующего дифференциального уравнения.

%Функция ode45fun8, на которую ссылается ode45, предназначена

%для вычисления значений правой части дифференциального

%уравнения объекта.

function f=fmsfun7(um)

global t t1 x x0 u umax

umax=um;

t=[];

x=[];

u=[];

[t, x]=ode45(@odefun7, [0 2*t1], [x0]);

for i=1: length(t),

if t(i)< t1

u(i)=(um/t1)*t(i);

else

u(i)=-(um/t1)*t(i)+2*um;

end

end

f=x(length(t))*x(length(t));

 

Файл odefun7.m

function f=odefun7(t, x)

global t1 umax

if t< t1

u=(umax/t1)*t;

else

u=-(umax/t1)*t+2*umax;

end

f=-0.5*x+u;







Дата добавления: 2014-11-10; просмотров: 657. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия