Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка параметров линейной множественной регрессии





1) в натуральном масштабе, т.е. для уравнения система нормальных уравнений имеет вид:

(6.3)

Ее решение может быть найдено, например, методом определителей.

Вычисление параметров линейной множественной регрессии можно провести с помощью инструмента Сервис/Анализ данных/Регрессия.

2) в стандартизированном масштабе:

, (6.4)

где – стандартизированные переменные

;

,

– стандартизированные коэффициенты регрессии. Решают систему нормальных уравнений вида

(6.5)

Решая ее методом определителей, найдем -коэффициенты.

Определение -коэффициентов:

1) Находим матрицу парных коэффициентов корреляции. Для двухфакторной линейной регрессии она имеет вид:

  y
y      
   
 

Удобнее всего найти эту матрицу Excel, используя инструмент анализа данных Корреляция. Для этого в главном меню нужно последовательно выбрать Сервис/Анализ данных/Корреляция.

2) для стандартизированного уравнения регрессии

имеем

; .

Коэффициенты «чистой» регрессии связаны с -коэффициентами следующим образом:

.

Методика построения уравнения регрессии при двухфакторном регрессионном анализе

приводит к следующим формулам для оценки параметров:

, , .

Методика построения уравнения регрессии в виде степенной функции

Преобразуем ее в линейный вид:

,

где переменные выражены в логарифмах. Далее процедура МНК такая же, что и описана выше: строится система нормальных уравнений и определяются параметры, которые затем следует потенцировать.







Дата добавления: 2014-11-10; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия