Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание 3. Решить систему (2.1) методом Зейделя





Решить систему (2.1) методом Зейделя.

Метод Зейделя отличается от метода простой итерации тем, что найдя какое-то значение для компоненты, мы на следующем шаге используем его для отыскания следующей компоненты. Вычисления ведутся по формуле

(2.8)

Каждое из условий (2.4)-(2.6) является достаточным для сходимости итерационного процесса по методу Зейделя. Практически же удобнее следующее преобразование системы (2.2). Домножая обе части (2.2) на АТ, получим эквивалентную ей систему

,

где = и d = . Далее, поделив каждое уравнение на , приведем систему к виду (2.8). Подобное преобразование также гарантирует сходимость итерационного процесса. Очевидно, схема метода Зейделя позволяет в ряде случаев находить решение за меньшее число итераций, чем в методе простой итерации.

 

ПРИМЕРНЫЙ ВАРИАНТ ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ НА MAPLE

Пример. Решить систему уравнений

x1+2*x2+3*x3=7,

x1-3*x2+2*x3=5,

x1+x2+x3=3.

Решение системы используя команду solve.

> restart;

> solve({x1+2*x2+3*x3=7, x1-3*x2+2*x3=5, x1+x2+x3=3}, [x1, x2, x3]);

Решение линейной системы уравнений Ax=b.

Используя команду linsolve(A, b).

> restart;

> with(linalg):

> A: = matrix(3, 3, [1, 2, 3, 1, -3, 2, 1, 1, 1]);

> b: = vector([7, 5, 3]);

> linsolve(A, b);

Решение линейной системы методом Гаусса

> restart;

> with(linalg):

> A: = matrix(3, 4, [1, 2, 3, 7, 1, -3, 2, 5, 1, 1, 1, 3]);

> gausselim(A, 'r', 'd');

Из третей строчки получаем, что x3=2, подставляем во второе полученное x3 и находим x2=0, аналогично подставляя в первое равенство, получаем x1=1.

Вычисление решения системы по формуле x=C*b

C - матрица обратная к матрице A

> restart;

> with(linalg):

> A: = matrix(3, 3, [1, 2, 3, 1, -3, 2, 1, 1, 1]);

> C: =inverse(A);

> b: = vector([7, 5, 3]);

> multiply(C, b);

Решение системы методом Крамера

> restart;

> with(linalg):

> B: =matrix(3, 3, [1, 2, 3, 1, -3, 2, 1, 1, 1]);

> det(B);

> B1: =matrix(3, 3, [7, 2, 3, 5, -3, 2, 3, 1, 1]);

> det(B1);

> B2: =matrix(3, 3, [1, 7, 3, 1, 5, 2, 1, 3, 1]);

> det(B2);

> B3: =matrix(3, 3, [1, 2, 7, 1, -3, 5, 1, 1, 3]);

> det(B3);

> x1: =det(B1)/det(B); x2: =det(B2)/det(B); x3: =det(B3)/det(B);

 

> #Вычисление норм вектора и матрицы

> with(linalg):

> b: = vector([0, 3, -4]);

> norm(b);

> M: =matrix(3, 3, [-1, 0, 3, 2, 5, 4, 7, 10, -10]);

> norm(M);

>

Таблица 2.1

 

№ вар.  
    0.35 0.12 - 0.13 0.12 0.71 0.15 - 0.13 0.15 0.63 0.10 0.26 0.38
  0.71 0.10 - 0.10 0.10 0.34 0.64 0.12 - 0.04 0.56 0.29 0.32 - 0.10
  0.34 - 0.04 0.06 - 0.04 0.44 0.56 0.10 - 0.12 0.39 0.33 - 0.05 0.28
  0.10 - 0.04 - 0.43 - 0.04 0.34 0.05 - 0.63 0.05 0.13 - 0.15 0.31 0.37
  0.63 0.05 0.15 0.05 0.34 0.10 0.15 0.10 0.71 0.34 0.32 0.42
    1.20 - 0.50 - 0.30 - 0.20 1.70 0.10 0.30 - 1.60 - 1.50 - 0.60 0.30 0.40
  0.30 - 0.10 - 1.50 1.20 - 0.20 - 0.30 - 0.20 1.60 0.10 - 0.60 0.30 0.70
  0.20 0.58 0.05 0.44 - 0.29 0.34 0.91 0.05 0.10 0.74 0.02 0.32
    6.36 7.42 1.77 1.75 19.03 0.42 1.0 1.75 6.36 41.70 49.49 27.67
  3.11 - 1.65 0.60 - 1.66 3.15 0.78 - 0.60 - 0.78 - 2.97 - 0.92 2.57 1.65
  1.20 - 0.20 - 0.30 - 0.20 1.60 - 0.10 0.30 - 0.10 1.50 - 0.60 0.30 - 0.40
  - 3 0.5 0.5 0.5 - 6 0.5 0.5 0.5 - 3 - 56.5 - 100 - 210
         
  3.5 - 1 - 1 4.5 0.6 - 0.7 2.6
  0.20 0.58 0.05 0.44 -0.29 0.34 0.05 0.81 0.20 0.74 0.02 0.32

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. К какому типу - прямому или итерационному - относится метод Гаусса?

2. В чем заключается прямой и обратный ход в схеме единственного деления?

3. Как организуется, контроль над вычислениями в прямом и обратном ходе?

4. Как строится итерационная последовательность для нахождения решения системы линейных уравнений?

5. Как формулируется достаточные условия сходимости итерационного процесса?

6. Как эти условия связаны с выбором метрики пространства?

7. В чем отличие итерационного процесса метода Зейделя от аналогичного процесса метода простой итерации?

 

Лабораторная работа №3







Дата добавления: 2014-11-10; просмотров: 1372. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия