Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение уравнений





Попробуем решить уравнение: . Использование функции solve даст нам один корень 1 и еще набор выражений вида RootOf(_Z^5+_Z^4+_Z^3+_Z^2+_Z-1, index =1). Дело в том, что произвольное уравнение степени выше 4 с рациональными коэффициентами может не иметь корней, выразимых в виде радикалов над рациональными числами. Решения всевозможных таких уравнений называются алгебраическими числами. Данное уравнение также неразрешимо в радикалах, и Maple нашла нам единственный корень, выразимый в радикалах (1) и сообщила, что оставшиеся корни являются алгебраическими числами: корнями многочлена z5+z4+z3+z2+z-1=0 (именно этот многочлен указан в аргументе функции RootOf). Maple умеет работать с алгебраическими числами, но можно также найти приближенное численное решение при помощи функции fsolve:

> fsolve(x^6-2*x+1=0, x);

 

Таблица 1.1

N Метод Уравнение
  K
  К
  Х
  К
  Х
  К
  Х
  K
  X
  K
  X
  K
  X
  K
  X

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Этапы решения уравнения с одной неизвестной.

2. Способы отделения корней.

3. Каким образом графическое отделение корней уточняется с помощью вычислений?

4. Дать словесное описание алгоритма метода половинного деления.

5. Необходимые условия сходимости метода половинного деления.

6. Условие окончания счета метода простой итерации. Погрешность метода.

7. Словесное описание алгоритма метода хорд. Графическое представление метода. Вычисление погрешности.

8. Словесное описание алгоритма метода касательных (Ньютона). Графическое представление метода. Условие выбора начальной точки.

 

Лабораторная работа № 2







Дата добавления: 2014-11-10; просмотров: 965. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия