Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическое введение. Моментом инерции I материальной точки относительно оси вращения называется скалярная величина равная произведению массы точки на квадрат ее расстояния от оси





Моментом инерции I материальной точки относительно оси вращения называется скалярная величина равная произведению массы точки на квадрат ее расстояния от оси вращения.

. /1/

Моментом инерции системы материальных точек относительно некоторой оси называется величина равная , где - момент инерции отдельной материальной точки относительно той же оси.

Твердое тело можно рассматривать как систему материальных точек, взаимное расположение которых не изменяется ни при каких условиях. Поэтому момент инерции твердого тела может быть определен как величина равная сумме моментов инерции материальных точек

. /2/

Для определения момента инерции твердого тела относительно некоторой оси, не проходящей через центр масс, используется теорема Гюйгенса – Штейнера

, /3/

где - момент инерции тела относительно оси, проходящей через центр масс,

m – масса тела,

d- расстояние между осями (рис. 4.1).

Одним из наиболее простых методов определения момента инерции твердого тела является метод физического маятника.

Физическим маятником называется твердое тело способное совершать колебания относительно оси, не проходящей через центр масс (рис. 4.2).

При отклонении маятника от положения равновесия на угол , возникает вращающий момент

, /4/

стремящийся вернуть маятник в положение равновесия. Запишем основное уравнение динамики вращательного движения

. /5/

В теории принято рассматривать так называемые малые колебания, при которых можно считать, что . Тогда учитывая, что уравнение можно переписать в виде

. /6/

Введя обозначение

, /7/

получим дифференциальное уравнение

, /8/

которое описывает гармонические колебания с частотой . Так как , то для периода колебаний физического маятника можно получить

. /9/

Это решение для уравнения /8 /является точным, но годится лишь для малых амплитуд.

В данной работе проводится экспериментальная проверка соотношения для физического маятника, имеющего форму стержня. Стержень может колебаться относительно горизонтальной оси (рис. 4.2.).

Момент инерции I стержня длиной L и массой m, относительно оси О может быть найден с помощью теоремы Штейнера.

, /10/

где - момент инерции стержня относительно оси проходящей через центр масс.

Тогда для периода колебаний стержня можно получить

. /11/

Введя обозначения и , окончательно получим

. /12/

Величина имеет размерность времени. Она совпадает с периодом колебаний математического маятника длиной L. Безразмерная величина характеризует положение оси вращения относительно центра масс стержня.

В этой работе необходимо изучить зависимость периода колебаний тонкого однородного стержня от расстояния d от оси подвеса до центра масс.

Результаты измерений удобно изобразить графически на координатной плоскости () и сравнить их с зависимостью, предсказываемой формулой. Для тонкого стержня любой длины, записанная в безразмерных переменных (x, y) зависимость периода малых колебаний от положения точки подвеса имеет вид

. /13/

График этой зависимости необходимо построить по точкам, рассчитав для 10 значений x, в пределах от 0, 05 до 0, 5 и сравнить их с экспериментальными данными.

 







Дата добавления: 2014-11-10; просмотров: 559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия