Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение напряжений в стержнях круглого сечения





 

Крутящие моменты, о которых шла речь выше, представляют лишь равнодействующие внутренних сил. Фактически в поперечном сечении скручиваемого стержня действуют непрерывно распределенные внутренние касательные напряжения, к определению которых теперь и перейдем.

 

 


Рис. 4.4. Рис. 4.5.

 

Ознакомимся прежде всего с результатами опытов. Если на поверхности стержня круглого сечения нанести прямоугольную сетку, то после деформации окажется (рис. 4.4):

1) прямоугольная сетка превратится в сетку, состоящую из параллелограммов, что свидетельствует о наличии касательных напряжений в поперечных сечениях бруса, а по закону парности касательных напряжений и в продольных его сечениях;

2) расстояния между окружностями, например между I и II, не изменятся. Не изменятся длина стержня и его диаметр. Естественно допустить, что каждое поперечное сечение поворачивается в своей плоскости на некоторый угол как жесткое целое. Можно считать, что радиусы всех поперечных сечений будут поворачиваться на разные углы, оставаясь прямолинейными.

На основании этого можно принять, что при кручении в поперечных сечениях стержня действуют только касательные напряжения.

Для установления закона распределения касательных напряжений по поперечному сечению скручиваемого стержня рассмотрим более детально деформации стержня (рис. 4.4 и 4.6). На рис. 4.6 в более крупном масштабе изображена часть стержня между сечениями I и II и показана одна сторона KN элемента KLMN (см. рис. 4.4).

Угол сдвига для элемента KLMN, лежащего на поверхности стержня, равен отношению отрезка NN ' к длине элемента dz (рис. 4.6):

 

(4.1)

 

Выделяя мысленно из рассматриваемой части бруса цилиндр произвольного радиуса r и повторяя те же рассуждения, получим угол сдвига для элемента, отстоящего на расстоянии r от оси стержня:

 

(4.2)

 

На основании закона Гука при сдвиге имеем

(4.3)

 







Дата добавления: 2014-11-10; просмотров: 1431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия