Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Statically indeterminate problems





 

Construction calculation problems in which elements of the force factors cannot be determined by the equations of the static’s balance alone are called statically indeterminate.

To solve such problems apart from balance equations displacement and deformation equations are made.

The details temperature change causes their dimensions change and as a result additional stresses called temperature stresses arise in the statically indeterminate systems.

Let us consider a weightless bar of the constant section of the A area and the length with rigidly clamped ends (Fig. 2.4). The tension temperature stresses arise in the bar under heating. Let us determine these stresses. Compose the equilibrium equation for the bar:

 

 

from then we get that the Rc and Rв reactions are equal. Having applied the section method we establish that the N normal force at the bar section is equal to the unknown reactions:

 

 

Compose an additional equation removing the damped right mentally and replacing it by the RB reaction. The additional equation will be as follows

 

 

(i.e. the bar temperature elongation is equal to its shortening under the Rc reaction action, because the constraints are absolutely rigid).

 

 

С
В
Rв
Rс
l
Z
Δ l

 


Fig. 2.4.

 

The temperature elongation , where α is the bar coefficient of linear expansion; the shortening under the Rc reaction action is Equate the right parts of these equalities:

hence

 

Let us determine the temperature stresses:

 

 

To avoid the temperature stresses achieving considerable values, one of the bridge’s send is put on the rollers. The compensator systems are made in the long pipelines that are subjected to the temperature changes.

Example. An absolutely ridid bar pictured in Fig.2.5 is pin-connected to the wall and hung up on two pinned and vertically placed steel bars that have the same length L = 2m. The force F = 20 kN acts at the D point of the bar. The cross section areas are the same: А1 = 3 сm2, A2 = 6 сm2. The material elasticity modulus for the bars is Е = 2.105 МPа, the weight force of the bar is G = 40 kN. Determine the stresses for the bars 1 and 2.

 

 


Fig. 2.5.

 

Solution. Considering the bar equilibrium, having removed the constraints and replacing them by their reactions, we get three unknowns: the Ra reaction of the A pin and the Rc and Rв reactions of the bars 1 and 2.

For the given parallel forces system only two equilibrium equations can be composed: the forces projection equation for the vertical axis and the moments equation relative to any point; hence, we have a statically indeterminate system.

To solve the problem it is necessary to compose an additional displacement equation for the construction elements. Imagine it in the deformed form. From the triangle resemblance ACC and ABB we receive

 

 

hence it follows

 

 

Compose the moments equation relative to the point A:

 

 

Simplifying the last equation, we get

 

4Rс + 10Rв = 5G + 7F.

 

According to Hookes law

 

 

Divide the second equation by the first one:

 

 

As , and А2 =2А1, then , hence .

Determine Rв and Rc:

4Rc+50Rc = 5G+7F, 54Rc = 5 . 40 +7 . 20 = 340.

So, Rс= 340/54=6, 3 кN and RB= 5Rc= 5 . 6, 3 = 31, 5 кN.

 

Determine and stresses for the bars:

 

 







Дата добавления: 2014-11-10; просмотров: 687. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия