Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные теоретические сведения. Линейные модели обычно применяются для анализа простых взаимосвязей между экономическими показателями





Линейные модели обычно применяются для анализа простых взаимосвязей между экономическими показателями. Однако в ряде случаев экономические соотношения имеют более сложный характер и их представление в виде линейной зависимости не всегда возможно, а часто и не корректно.

Однако часто нелинейные связи между объясняющими и объясняемой переменной можно с помощью определенных преобразований свести к линейным.

К таким нелинейным связям в частности относятся:

1) Нелинейные регрессии относительно объясняющих переменных Хi, но линейные по оцениваемым параметрам i .

а) Y = 0 + 1 Х + 2 Х 2 + …+ m Хm + - степенной полином.

б) Y = 0 + 1 + - равносторонняя гипербола.

2) Регрессии нелинейные по оцениваемым параметрам i .

а) Y = А - показательная функция.

б) Y = A - степенная функция.

в) Y = - экспоненциальная функция.

Нелинейности первого вида приводятся к линейным регрессиям с помощью преобразования объясняющих переменных (введением новых переменных).

Примеры.

Y = 0 + 1 Х + 2 Х 2 + … Y = 0 + 1 Х 1* + 2 Х 2* + …+ m Хm + , (3.1)

где Х 1* = Х; Х 2* = Х 2, …, Х m* = Х m.

 

Y = 0 + 1 + Y = 0 + 1 Х * + , (3.2)

где Х * = .

 

Оценка коэффициентов осуществляется по уравнению (3.1) с использованием метода МНК оценки для множественной линейной регрессии.

Выражение (3.2) соответствует парной линейной регрессии.

Нелинейности второго вида приводятся к линейным с помощью операции логарифмирования.

Пример.

В качестве примера рассмотрим производственную функцию Кобба-Дугласа

Y = A , (3.3)

где Y – объем производства; К – затраты капитала; L – затраты труда; - случайное возмущение; 1, 2 – коэффициенты частной эластичности объема производства Y по затратам капитала К и труда L; A – постоянный коэффициент.

Логарифмируя обе части уравнения (3.3) для i – го наблюдения, получим

ln yi = ln A + 1 ln Ki + 2 ln Li + ln i . (3.4)

Переобозначив переменные в (3.4)

yi * = ln yi; Х 1 i = ln Ki; Х 2 i = ln Li; 0 = ln A; = ln i,

получим

yi * = 0 + 1 Х 1 i + 2 Х 2 i + (3.5)

Для выборки объема n в матричной форме уравнение (3.5) запишется в виде

, (3.6)

где = (y1 * , y2 * , …, yn * ) T ; В = ( 0, 1 , 2 ) Т ;

.

Таким образом, алгоритм оценки параметров нелинейной регрессии состоит из предварительного преобразования нелинейной модели к линейной и оценки ее параметров обычным образом с использованием МНК. После чего осуществляются обратные преобразования и возврат к исходному нелинейному уравнению.

Для нелинейной регрессии значимость уравнения в целом характеризуется также, как и в линейной регрессии с помощью коэффициента детерминации :

= 1 – (1 – R 2) , (3.7)

 

где R 2 = 1 - . (3.8)

В (3.8) определяется по исходному нелинейному уравнению регрессии.

Примечание. Значимость коэффициентов регрессии осуществляется по линеаризованному уравнению. Поэтому, если в линеаризованном уравнении присутствует не bi, а ln bi, тогда Т -статистика этого параметра будет:

Тbi = ,

и характеризует значимость не самого коэффициента bi, а его логарифма.

При описании статистической зависимости между экономическими переменными различными функциональными соотношениями выбор наилучшей модели осуществляется следующим образом. Выбираются уравнения с наибольшими значениями . Если таких уравнений несколько (примерно с одинаковыми значениями ), то выбирается модель, у которой наименьшая или наименьшая остаточная дисперсия

.

 

 







Дата добавления: 2014-11-10; просмотров: 615. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия