Характеристики ДТЛ
Схема для снятия входной характеристики IВХ= F(UВХ) и характеристики прямой передачи UВЫХ = F(UВХ) приведена на рисунке а. Входная характеристика приведена на рисунке 1.7б, а характеристика прямой передачи на рисунке 1.9а. При нулевом напряжении на входе через диод VD 1 протекает ток IВХ=(ЕПИТ- UА)/R1 (поскольку он вытекает, то он отрицательный). Транзистор закрыт, ток коллектора отсутствует и на выходе напряжение равно напряжению источника питания. При увеличении входного напряжения диод VD 1 закрывается и входной ток уменьшается. а) б) Рисунок 1.7 При напряжении равном примерно 1, 8 В ток начинает протекать по цепи VD 3, VD 4 и эмиттерный переход транзистора (ток через эти переходы начинает протекать, когда напряжение на каждом их них достигнет 0, 6 В, см. ВАХ кремниего диода). Через диод VD1 в этом случае начинает протекать обратный ток. Ток базы транзистора равен IБ=(EПИТ-UА)/R1. Транзистор в этом случае переходит в режим насыщения и напряжение на выходе снижается до уровня 0, 1 В. Схема для снятия выходной характеристики приведена на рисунке 1.8. Рисунок 1.8 а) б) Рисунок 1.9
Характеристики снимаются в двух случаях: на вход ИМС подается напряжение логического ² 0² (можно подать 0 В) и напряжение, соответствующее логической ² 1² (5 В). В первом случае транзистор закрыт и при напряжении, которое подается на выход ИМС с потенциометра, равное 0 В, ток будет равен ЕПИТ/R3, ток вытекает, поэтому он отрицательный. При подаче напряжения равного 5 В выходной ток будет равен 0. Во втором случае, хотя транзистор открыт, он шунтируется милли -амперметром, и ток также будет равен ЕПИТ/R3. При увеличении напряжения, когда оно сравняется с напряжение насыщения транзистора (0, 1 В) ток будет равен 0. При дальнейшем увеличении выходная характеристика ИМС будет повторять выходную характеристику транзистора. (Она показана пунктиром, так как мощность рассеивания на коллекторе превышает допустимую).
1.4 Транзисторно – транзисторная логика.
На рисунке 1.10а представлена структура диодов VD1-VD3 схемы ДТЛ. В интегральном исполнении области р можно объединить, и тогда получится структура изображенная на рисунке 1.10б. Эта структура представляет собой транзистор с двумя эмиттерами (двухэмиттерный транзистор). а) б) Рисунок 1.10
Если в предыдущей схеме ДТЛ диоды VD 1, VD 2 и VD 3 заменить на двухэмиттерный транзистор, то получится транзисторно – транзисторная логика (ТТЛ), принципиальная схема которой приведена на рисунке 1.11. Рисунок 1.11
В качестве VT1 можно использовать транзистор с большим числом эмиттеров, схема в этом случае будет иметь соответствующее число входов. Принцип работы, таблица истинности и характеристики ТТЛ такие же, как у ДТЛ. Недостаток предыдущих схем заключается в следующем. Заменим транзистор VT2 ключом с сопротивлением RТ (рисунок 1.12а). В исходном состоянии (на входе схемы логический ² 0²), транзистор закрыт (ключ разомкнут), на выходе напряжение равно напряжению питания ЕПИТ (рисунок 1.12б). При подаче на вход логической ² 1² ключ замыкается. В этом случае ёмкость нагрузки СН разряжается через малое сопротивление ключа RT и время включения будет составлять t10. При подаче на вход логического² 0² ключ вновь размыкается и, в этом случае, ёмкость СН будет заряжаться через сопротивление R3, которое намного больше, чем RT и время выключения будет t01> t10, из-за этого быстродействие схемы будет низким.
а) б) Рисунок 1.12
Кроме того между точкой А и общим проводом находятся два pn-перехода, следовательно на эмиттерном переходе при подаче на вход логического ² 0² напряжение будет составлять 0, 4 В и для того, чтобы открыть транзистор надо приложить меньшее напряжение, т.е. помехо-устойчивость схемы снижается. Задача состоит в том, чтобы снизить t01 (t01» t10) и повысить помехоустойчивость.
|