Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моментные функции случайных процессов




 

Вполне удовлетворительные для практики, хотя и менее детальные, характеристики случайных процессов можно получить, вычисляя моменты тех случайных величин, которые наблюдаются в сечениях этих процессов. Поскольку в общем случае эти моменты зависят от временных аргументов, они получили название моментных функций.

Для техники наибольшее значение имеют три моментные функции низших порядков, называемые математическим ожиданием, дисперсией и функцией корреляции.

Математическое ожидание – начальный момент I-го порядка:

(6.5)

есть среднее значение процесса X(t) в текущий момент времени t: усреднение проводится по всему ансамблю реализаций процесса.

Дисперсия центральный момент II-го порядка:

(6.6)

позволяет судить о степени разброса мгновенных значений, принимаемых отдельными реализациями в фиксированном сечении t, относительно среднего значения.

Двумерный центральный момент II-го порядка.

(6.7)

называется функцией корреляции случайного процесса X(t). Эта моментная функция характеризует степень статистической связи тех случайных величин, которые наблюдаются при . Из сравнения формул (6.6) и (6.7) видно, что при совмещении сечений функция корреляции численно равна дисперсии:

(6.8)








Дата добавления: 2014-11-12; просмотров: 2545. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2019 год . (0.001 сек.) русская версия | украинская версия