Студопедия — Взаимокорреляционная функция двух сигналов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимокорреляционная функция двух сигналов






 

Взаимокорреляционной функцией (ВКФ) двух вещественных сигналов U(t) и V(t) называется скалярное произведение вида:

(4.18)

ВКФ служит мерой «устойчивости» ортогонального состояния при сдвигах сигналов во времени.

Действительно, если сигналы U(t) и V(t) ортогональны в исходном состоянии, то

При прохождении этих сигналов через различные устройства возможно, что сигнал V(t) будет сдвинут относительно сигнала U(t) на некоторое время .

Свойства ВКФ.

1) В отличие от АКФ одиночного сигнала, ВКФ, описывающая свойства системы двух независимых сигналов, не является чётной функцией аргумента :

(4.19)

2) Если рассматриваемые сигналы имеют конечные энергии, то их ВКФ ограничена.

3) При значения ВКФ вовсе не обязаны достигать максимума.

Пример ВКФ может служить

взаимокорреляционная функция прямоугольного и треугольного видеоимпульсов.

Установим связь ВКФ со взаимной спектральной плотностью (взаимным энергетическим спектром)

На основании теоремы Планшереля

и поскольку спектр смещённого во времени сигнала , то и (4.20)

Поскольку взаимный энергетический спектр то будет справедливо равенство:

(4.21)

Таким образом, взаимокорреляционная функция и взаимный энергетический спектр связаны между собой парой преобразований Фурье.

Если сигналы U(t) и V(t) – дискретные, то их можно задать как совокупность отсчётов, следующих во времени с одинаковыми интервалами T

Тогда по аналогии с АКФ одиночного сигнала ВКФ двух дискретных сигналов определится по формуле:

(4.22)

где n – целое число, положительное, отрицательное или нуль.


Раздел 5. Модулированные сигналы

 

Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перенести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в технике связи название модуляции.

Прежде всего в передатчике формируется вспомогательный высокочастотный сигнал, называемый несущим колебанием. Его математическая модель , такова что имеется некоторая совокупность параметров , , …, , определяющих форму этого колебания. Пусть S(t) – низкочастотное сообщение, подлежащее передаче по каналу связи на расстояние. Если по крайней мере, один из указанных параметров изменяется во времени пропорционально передаваемому сообщению, то несущее колебание приобретает новое свойство – оно несёт в себе информацию которая первоначально была заключена в сообщении S(t).

Физический процесс управления параметрами несущего колебания и является модуляцией.

Широкое распространение получили системы модуляции, использующие в качестве несущего простое гармоническое колебание.

, (5.1)

имеющее три свободных параметра U, и . Изменяя во времени тот или иной параметр, можно получать различные виды модуляции.

 







Дата добавления: 2014-11-12; просмотров: 2161. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2024 год . (0.04 сек.) русская версия | украинская версия