Характеристики случайных процессов
Определим в начале основные характеристики случайных величин. Пусть Х – случайная величина, т.е. совокупность всевозможных вещественных чисел x, принимающих случайное значение. Исчерпывающее описание статистических свойств Х можно получить, располагая неслучайной функцией F(x) вещественного аргумента x, которая равна вероятности того, что случайное число из X примет значение, равное или меньшое конкретного х:
Функция F(x) называется функцией распределения случайной величины Х. Если Х может принимать любые значения, то F(x) является гладкой неубывающей функцией, значения которой лежат на отрезке Производная от функции распределения
То есть величина Для непрерывной случайной величины Х плотность вероятности р(x) представляет собой гладкую функцию. Если же Х – дискретная случайная величина, принимающая фиксированные значения
В обоих случаях плотность вероятности должна быть неотрицательной:
Рассмотрим теперь плотность вероятности для случайных процессов. Пусть Х(t) случайный процесс, заданный ансамблем реализаций а Информация которую можно извлечь из одномерной плотности вероятности, недостаточна для того, чтобы судить о характере развития реализаций случайного процесса во времени. Гораздо больше сведений можно получить, располагая двумя сечениями случайного процесса в несовпадающие моменты времени Возникающая при таком мысленном эксперименте двумерная случайная величина Естественным обобщением является n-мерное сечение случайного процесса (n> 2), приводящее к n-мерной плотности вероятности Многомерная плотность вероятности случайного процесса должна удовлетворять обычным условиям, налагаемым на плотность вероятности совокупности случайных величин. Помимо этого, величина
|