Сигналы с амплитудной модуляцией
Если переменной оказывается амплитуда сигнала U(t), причём остальные два параметра
В соответствии с формулой (5.2) АМ-сигнал есть произведение огибающей U(t) и гармонического заполнения При АМ связь между огибающей U(t) и модулирующим полезным сигналом S(t) определяется следующим образом:
Здесь
Если же в момент времени, когда сигнал S(t) достигает экстремальных значений, имеются приближённые равенства.
АМ-сигналы с малой глубиной модуляции нецелесообразны ввиду неполного использования мощности передатчика. В то же время 100%-ная модуляция (М=1) в два раза повышает амплитуду колебаний при пиковых значениях модулированного сообщения. Дальнейший рост этой амплитуды, как правило, приводит к нежелательным искажениям из-за перегрузки выходных каскадов передатчика. Не менее опасна слишком глубокая АМ (при М> 1) называемая перемодуляцией. Здесь форма огибающей перестаёт повторять форму модулированного сигнала. Однотональная АМ. Простейший АМ-сигнал может быть получен в случае, когда модулирующим низкочастотным сигналом является гармоническое колебание с частотой
называется однотональным АМ-сигналом. Такой сигнал можно представить как сумму простых гармонических колебаний с различными частотами. Используя известную тригонометрическую формулу произведения косинусов, из выражения (5.4) сразу получаем:
Формула (5.5) устанавливает спектральный состав однотонального АМ-сигнала. Принята следующая терминология: Строя по формуле (5.5) спектральную диаграмму однотонального АМ-сигнала, следует обратить внимание на равенство амплитуд верхнего и нижнего боковых колебаний, а также на симметрию расположения этих спектральных составляющих относительно несущего колебания. Если рассмотреть вопрос о соотношении мощностей несущего и боковых колебаний, то путём несложных математических преобразований можно убедиться, что средняя мощность АМ-сигнала равна сумме средних мощностей несущего и боковых колебаний.
Откуда следует:
Даже при 100%-ной модуляции (М=1) доля мощности обоих боковых колебаний составляет лишь 50% от мощности немодулированного несущего колебания. А поскольку информация о сообщении заключена в боковых колебаниях, можно сделать вывод о неэффективности использования мощности при передаче АМ-сигнала. АМ при сложном модулирующем сигнале На практике однотональные АМ-сигналы используются редко. Гораздо более реален случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав. Математической моделью такого сигнала может быть, например, тригонометрическая сумма.
Здесь частоты Подставив формулу (5.8) в (5.3), получим:
Введём совокупность парциальных (частичных) коэффициентов модуляции:
Спектральное разложение проводится так же, как и однотонального АМ-сигнала:
На рисунке а) изображена спектральная диаграмма модулирующего сигнала S(t), построенная в соответствии с формулой (5.8). Рисунок б) воспроизводит диаграмму многотонального АМ-сигнала, где помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. С целью упрощения изображены только физические спектры.
Амплитудно-манипулированные сигналы. Важным классом многотональных АМ-сигналов являются так называемые манипулированные сигналы. В простейшем случае это – последовательности радиоимпульсов, отделённых друг от друга паузами. Такие сигналы широко используются в технике связи. Если S(t) – функция, в каждый момент времени принимающая значение либо 0, либо1, то амплитудно-манипулированный сигнал представляется в виде:
Пусть, например, функция S(t) отображает периодическую последовательность видеоимпульсов. Считая, что амплитуда этих импульсов A=1, на основании (5.14) имеем при
Где q - скважность последовательности (
Балансная АМ.
Как видно из предыдущего, значительная доля мощности АМ – сигнала сосредоточена в несущем колебании. Для более эффективного использования мощности передатчика можно формировать АМ – сигналы с подавленным несущим колебанием, реализуя так называемую балансную АМ(БМ). На основании формулы (5.4) представление однотонального АМ – сигнала с БМ таково:
Имеет место перемножение двух сигналов – модулирующего и несущего. Колебания вида (5.16) с физической точки зрения являются биениями двух гармонических сигналов с одинаковыми амплитудами При многотональной БМ аналитическое выражение сигнала принимает вид:
Рассмотрим спектральную и временную диаграмму БМ – сигнала. Как и при обычной АМ, в спектре БМ наблюдается две симметричные группы верхних и нижних боковых колебаний. Если рассмотреть временную диаграмму биений, может показаться неясным, почему в спектре этого сигнала нет несущей частоты, хотя налицо присутствие высокочастотного заполнения, изменяющегося во времени именно с этой частотой. Дело в том, что при переходе огибающей биений через нуль фаза высокочастотного заполнения скачком изменяется на 180 градусов, поскольку функция Однополосная амплитудная модуляция. Ещё более интересное усовершенствование принципа обычной АМ заключается в формировании сигнала с подавленной верхней или нижней боковой полосой частот (ОБП). Сигналы с одной боковой полосой (SSB - singl side band) по внешним характеристикам напоминают обычные АМ-сигналы. Например, однотональный ОБП-сигнал с подавленной нижней боковой частотой записывается в виде:
Проводя тригонометрические преобразования, получаем: (5.19) Два последних слагаемых представляют собой произведение двух функций, одна из которых изменяется во времени медленно, а другая – быстро. Основное преимущество ОБП-сигналов – двукратное сокращение полосы занимаемых частот, что оказывается существенным для частотного уплотнения каналов связи. Дальнейшим усовершенствованием систем ОБП является частичное или полное подавление несущего колебания. При этом мощность передатчика используется ещё более эффективно.
|