Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы анализа математических моделей СИ





Прямой путь нахождения зависимости между входным и выходным сигналами во временной области – это полученное выражение: y(t) = F[x(t)]. Это решение дифференциального уравнения или системы дифференциальных уравнений. Если систему дифференциальных уравнений аналитически решить не удается, то, по крайней мере, необходимо найти те характеристики СИ, определение которых является одной из основных задач в процессе их исследования и разработки. Методы решения дифференциальных уравнений, а следовательно, и методы анализа математической моделей СИ можно разделить на 4 группы:

1) точные (детерминированные) методы

2) приближенные методы

3) численные методы

4) частотные методы

К точным методам относятся методы, позволяющие выражать решения дифференциальных уравнений через элементарные и специальные функции. К таким методам относятся классический метод решения дифференциальных уравнений, преобразования Лапласа и преобразования Карсона - Хевисайда, и ряд других. В связи со сложностью и громоздкостью этих методов, ограничиваются использованием дифференциальных уравнений не высокого порядка.

Приближенные методы – это методы, при которых решение дифференциальных уравнений получается как предел некоторой последовательности y(t), выраженной через элементарные функции. Если ограничиться конечным числом n, то получим приближенное выражение для y(t). В этом смысле y(t) является пределом последовательности с конечным числом n.

. (9.1)

Примером приближения может быть метод последовательного приближения, разложения в степенной ряд.

Численные методы – это алгоритмы вычисляемых значений искомого решения y(t) на некоторой выбранной сетке аргумента. Решения эти имеют вид таблицы и не позволяют найти общий вид для выражения y(t). Однако, с появлением быстродействующих ЭВМ, численные методы, благодаря своей универсальности стали основой для проектирования СИ.

Частотные методы анализа хорошо разработаны и широко используются в теории автоматического управления (критерии Михайлова, амплитудно-фазовые характеристики и др.) Суть частотных методов состоит в анализе математической моделей СИ в частотной области: определение частотной погрешности, полосы пропускания СИ; нахождение граничной частоты и др.

9. ПОМЕХОЗАЩИЩЁННОСТЬ СРЕДСТВ ИЗМЕРЕНИЙ







Дата добавления: 2014-11-12; просмотров: 587. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия