Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения Бернулли





 

Определение. Уравнение вида

 

(1.43)

 

где – непрерывные на некотором интервале функции, действительное число, отличное от 0 и 1, называется уравнением Бернулли.

Делением обеих частей на и подстановкой , где новая неизвестная функция, это уравнение приводится к линейному уравнению

 

.

 

Заметим, что при делении обеих частей уравнения (1.43) на при возможна потеря решения . Это решение является частным, если , и особым, если .

Пример 1 Решить уравнение

.

Решение. Обе части уравнения разделим на , тогда будем иметь:

. (1.44)

Положим , откуда . В силу введенной подстановки уравнение (1.44) можно записать следующим образом:

 

или

(1.45)

 

Последнее уравнение – линейное относительно функции . Его общее решение есть

,

 

где произвольная константа (см. п.1.4., пример 1). Отсюда, учитывая, что , записываем общий интеграл исходного уравнения

.

Так как показатель степени в правой части нашего уравнения равен 2, то потерянное при интегрировании решение является частным.

Замечание. При интегрировании уравнения Бернулли можно также непосредственно применить подстановку или метод вариации произвольной постоянной.

Пример 2 Проинтегрировать уравнение

. (1.46)

Решение. Уравнение (1.46) – это уравнение Бернулли. Положим , тогда (1.46) запишется в виде

 

.

или

.

Функцию выберем так, чтобы . Например, пусть . Подставив вместо в последнее уравнение и учитывая, что , для определения будем иметь уравнение

 

. (1.47)

Последнее уравнение – это уравнение с разделяющимися переменными, его общий интеграл есть

 

,

откуда

,

где произвольная константа. Следовательно, общее решение ОДУ (1.46) есть

. (1.48)

 

Заметим, что при интегрировании уравнения (1.47) методом разделения переменных мы теряем решение , это ведет к потере решения уравнения (1.46). Так как в правой части (1.46) стоит степень с показателем , то теряемое решение является особым.

Рассмотрим другой способ решения уравнения (1.46), а именно проинтегрируем его методом вариации произвольной постоянной. Запишем однородное уравнение, соответствующее (1.46):

 

.

 

Его общее решение есть . Пусть С= С (х), тогда общее решение (1.41) будем искать в виде

 

. (1.49)

Подставив и в уравнение, будем иметь

 

,

или

.

Проинтегрировав последнее уравнение, находим

,

или

,

где произвольная константа, . Подставляя С (х) в (1.49), получаем общее решение уравнения (1.49) в форме (1.48)

 

.

 







Дата добавления: 2014-11-12; просмотров: 810. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия