Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1) Интегрируя первый раз, получим





1) Интегрируя первый раз, получим . После повторного интегрирования будем иметь

 

Следовательно, - общее решение.

2) Чтобы найти частное решение, подставим в полученное общее решение и в выражение для первой производной значения и , получим систему двух уравнений с неизвестными и :

Подставив найденные и в общее решение получим искомое частное решение .

 

2.2.2 Уравнение вида

. (2.7)

 

Уравнение (2.7) не содержит искомой функции и ее нескольких последовательных производных (производных до (k-1) включительно). С помощью замены понизим порядок уравнения на единиц, тогда

 

. (2.8)

Общее решение уравнения (2.8) имеет вид

.

 

Тогда искомая функция решение уравнения (2.7) получается с помощью кратного интегрирования функции (см. п. 2.2.1).

Для дифференциального уравнения второго порядка не содержащего явно искомой функции y подстановка , тогда преобразует данное уравнение в уравнение I порядка

Пример Найти общее решение уравнения .

Решение. Данное уравнение не содержит и . Положим , тогда и уравнение будет иметь вид: . Это линейное уравнение первого порядка (см. п.1.4.). Его общее решение имеет вид . Так как , то для отыскания искомого общего решения надо проинтегрировать уравнение . Таким образом,

,

тогда

.

Следовательно, , где - произвольные постоянные, является общим решением заданного уравнения.

 

 

2.2.3 Уравнения вида

. (2.9)

 

Уравнение (2.9) не содержит явно независимую переменную . В этом случае примем за независимую переменную и введем новую функцию . Считая, что есть функция от и через посредство зависит от и, применяя правило дифференцирования сложных функций, получим для производных от по выражения

 

,

 

,

 

аналогично вычисляются .

Подставляя в уравнение (2.9) вместо и т.д., увидим, что в новых переменных порядок уравнения будет , т.е. на единицу ниже.

Если это преобразованное уравнение проинтегрировано и - его решение, то нахождение общего интеграла данного уравнения сводится к интегрированию

.

Откуда получаем общее решение ОДУ (2.9)

 

.

Одна из произвольных постоянных входит в качестве слагаемого к , а это означает, что всякую интегральную кривую можно перемещать параллельно оси .

Если дифференциальное уравнение не содержит независимой переменной x, искомой функции y(x) и ее производных до (k-1) порядка включительно, то порядок уравнения можно понизить на (k+1) применяя подстановку

, а затем .

Например, для дифференциального уравнения второго порядка, не содержащего независимой переменной x, т.е. уравнение имеет вид подстановка сводит уравнение к уравнению первого порядка

Пример Найти общий интеграл уравнения .

 

Решение. Положим

и подставим в исходное уравнение, тогда получим

 

.

 

Сократим на , при этом учтем теряемое решение или и получим

.

Это уравнение рассматриваемого вида, делая ту же замену придем к уравнению

.

Сократив на (при этом учитываем еще одно решение , т.е. и ), получим

 

.

Проинтегрировав уравнение , находим , или Окончательно получим

, где .

Это семейство парабол. Заметим, что в общее решение входят и потерянные ранее частные решения (кроме ).

 

 







Дата добавления: 2014-11-12; просмотров: 580. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия