Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения в полных дифференциалах





 

Определение. Дифференциальное уравнение вида

 

(1.50)

 

называется уравнением в полных дифференциалах, если его левая часть представляет собой полный дифференциал некоторой функции независимых переменных .

Общий интеграл такого уравнения имеет вид

 

.

 

Следующая теорема дает признак того, что уравнение вида (1.50) является уравнением в полных дифференциалах.

Теорема. Если функции и непрерывны вместе с частными производными и в некоторой односвязной области плоскости , то левая часть уравнения (1.50) будет являться полным дифференциалом некоторой функции тогда и только тогда, когда выполняется тождество

 

. (1.51)

 

Интегрирование уравнения в полных дифференциалах сводится к нахождению по функциям и соответствующей функции . Особые решения отсутствуют.

Пример 1 Проинтегрировать уравнение

.

 

Решение. Данное уравнение есть уравнение в полных дифференциалах, так как функции и непрерывны во всей плоскости вместе со своими частными производными, при этом выполняется условие (1.46):

 

.

Таким образом, левая часть данного уравнения является полным дифференциалом некоторой функции . Так как , то имеем соотношения

.

Из первого, интегрированием по х, получаем

 

или

. (1.52)

 

Здесь непрерывно дифференцируемая функция, постоянная интегрирования. Считаем ее зависящей от , ибо интегрирование производилось по х. Из (1.52) находим

 

.

Так как, с другой стороны,

 

,

то имеем следующее уравнение для определения :

 

,

или

.

Отсюда находим

 

,

то есть

, (1.53)

где произвольная константа. Подставляя (1.53) в (1.52), имеем семейство функций

,

для которых левая часть данного уравнения является полным дифференциалом. Таким образом, наше уравнение можно записать в виде

,

откуда его общий интеграл есть

.

 

1.6.1 Примеры для самостоятельного решения

 

Выяснить, являются ли следующие уравнения уравнениями в полных дифференциалах, и найти их общее решение.

 

1

отв:

 

2

отв:

 

3

отв:

 

 







Дата добавления: 2014-11-12; просмотров: 937. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия