Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм минимизации функций в классе нормальных форм





Пусть f – функция алгебры логики.

1. Строим все МДНФ функции f.

2. Строим все МКНФ функции f.

3. Из построенных минимальных форм выбираем простейшие (по числу букв).

Пример 6. В классе нормальных форм минимизировать функцию f =(01011110).

1. Строим СДНФ для функции f:

2. Строим сокращенную ДНФ функции f:

3. Строим матрицу покрытий (таблица 3.6).

Таблица 3.6

  N   ПИ   ` x ` y z ` x y z x ` y ` z x ` y z x y ` z
    ` x z ` y z x ` y x ` z   + + + + + + + +

 

Решеточное выражение E = (1 Ú 2) 1 (3 Ú 4) 4 = 134 Ú 124.

4. Строим все тупиковые ДНФ функции f:

5. Обе построенные ТДНФ являются минимальными.

6. Повторяем эти этапы для функции ` f.

СДНФ:

Сокращенная ДНФ:

Строим матрицу покрытий (таблица 3.7).

Таблица 3.7

  N   ПИ   x`y`z `x y`z x y z
    `x`z x y z   + + +

 

Решеточный многочлен E = 112 = 12. Единственная тупиковая ДНФ (она же минимальная) для функции Минимальная КНФ функции Из построенных МДНФ и МКНФ выбираем простейшую

Пример 7. В классе нормальных форм минимизировать функцию f =(11011011).

1. СДНФ:

2. Сокращенная ДНФ: =

3. Строим матрицу покрытий (таблица 3.8).

 

Таблица 3.8

  N   ПИ   ` x ` y ` z ` x ` y z ` x y z x ` y ` z x y ` z x y z
  x y x`z y ` z ` x z y z ` x ` y + + + + + + + + + + + +

 

E = (3 Ú 6) (4 Ú 6) (4 Ú 5) (2 Ú 3) (1 Ú 2) (1 Ú 5) = 1246 Ú 1356 Ú 134 Ú 256 Ú 2345.

4. Тупиковые ДНФ функции f:

5. Минимальные ДНФ функции f:

6. Повторяем указанные выше этапы для функции ` f.

СДНФ:

Сокращенная ДНФ:

Построенная сокращенная ДНФ функции ` f является для нее тупиковой и минимальной.

Минимальная КНФ функции

Построенные МДНФ и МКНФ имеют одно и то же число букв; все они составляют минимальные формы для f:

 







Дата добавления: 2014-11-12; просмотров: 827. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия