Численные методы
С помощью математического моделирования решение научно-технической задачи сводится к решению математической задачи, являющейся её моделью. Для решения математических задач используются следующие основные группы методов: аналитические, графические и численные. При использовании аналитических методов решения задачи удается выразить с помощью формул. В частности, если математическая задача состоит в решении простейших алгебраических или трансцендентных уравнений, дифференциальных уравнений и т.п., то использование известных из курса математики примеров сразу приводит к цели. К сожалению, на практике это бывает достаточно редко. Графические методы позволяют в ряде случаев оценить порядок искомой величины. Основная идея этих методов состоит в том, что решение находится путем геометрических построений. Например, для нахождения корней уравнения f(x) =0 строится график функции y=f(x), точки пересечения которого с осью абсцисс и будут искомыми корнями. Графически методы могут применяться для получения начальных приближений к решению, которые затем уточняются с помощью численных методов. Основным инструментом для решения сложных математических задач в настоящее время являются численные методы, позволяющие свести решение задач к выполнению конечного числа арифметических действий над числами; при этом результаты получаются в виде числовых значений. Подчеркнем важные отличия численных методов от аналитических. Во-первых, численные методы позволяют получить лишь приближенное решение задачи. Во-вторых, они обычно позволяют получить решение задачи с конкретными значениями параметров и исходных данных. Поясним второе отличие на примере. По формуле (1) (по аналитическому решению) можно проанализировать как изменяется закон движения при изменении параметров g, m и начальных значений u0 и h0. Если в модели (2) выражение F(t) имеет простой вид (например, F(t) =const), то можно получить аналитическое решение, аналогичное (1). Это решение легко исследовать на предмет зависимости от изменения параметров и начальных условий. Если же выражение для F(t) достаточно сложно, то задачу (2) проще решить численно. При этом вместо общей формулы решения в результате расчета будут получены значения u и h для некоторого набора моментов времени t при конкретных значениях g, m, u0, h0. Для получения решения при других значениях параметров и (или) других начальных условиях необходимо провести новый расчет. Для анализа зависимости решения от параметров и начальных условий необходима большая серия расчетов. Несмотря на эти недостатки, численные методы незаменимы в сложных задачах, которые не допускают аналитического решения. Многие численные методы разработаны давно. С появлением ЭВМ начался бурный период их развития и внедрения в практику. Только ЭВМ под силу выполнить за короткое время объем вычислений в миллиарды, триллионы и более операций, необходимых для решения многих современных задач. Численные методы наряду с возможностью получения результата за приемлемое время должны обладать и ещё одним важным качеством – не вносить в вычислительный процесс значительных погрешностей.
|