Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы аппроксимации и интерполирования





Пусть задана некоторая последовательность экспериментальных значений и требуется установить функциональную зависимость y=f(x), которой они подчиняются.

В общем случае вид зависимости у=f(х) неизвестен, поэтому задача обработки экспериментальных данных сводится, по существу, к двум частным задачам, решаемым совместно:

1) выбор и установление характера зависимости (или её структуры);

2) определение коэффициентов этой зависимости (их численных значений), обеспечивающих минимальное отклонение экспериментальных и расчетных значений функции.

Характер зависимости у=f(х), используемой при обработке экспериментальных данных, обычно устанавливается, исходя из физических соображений (закономерность изменения параметров процесса, теоретические предпосылки и т. д.). Если же вид зависимости неизвестен, то чаще всего принимается многочисленное приближение.

Если структура зависимости у=f(х) заранее неизвестна, то обычно наилучшее приближение рассматривают с точки зрения абсолютного совпадения расчетных (полученных по функции f(x)) и экспериментальных (табличных) значений. Такой подход называется интерполированием (рис. 22).

Рис. 22. Графическое отражение результатов интерполирования (ye – экспериментальные значения, y(x1) – расчетные)

Если структура зависимости у=f(х) заранее известна, т. е. известна структура функции f(x), и количество параметров функции значительно меньше числа экспериментальных точек, то задачу наилучшего приближения обычно рассматривают с точки зрения минимизации рассогласований между табличными и экспериментальными значениями. Такой подход называется аппроксимацией (рис. 23).

Рис. 23. Графическое отражение результатов аппроксимации (ye – экспериментальные значения, y – расчетные)







Дата добавления: 2014-11-12; просмотров: 962. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия