Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие теоретические сведения. На практике очень часто зависимости между интересующими нас величинами задаются таблично, например, зависимость между температурой и ЭДС термопары задается в





На практике очень часто зависимости между интересующими нас величинами задаются таблично, например, зависимость между температурой и ЭДС термопары задается в виде градуировочных таблиц. В случае задания зависимости в виде таблицы нет возможности определения значений, находящихся между табличными значениями. Для решения данной задачи необходимо заменить таблично заданную зависимость аналитической зависимостью.

Математическая постановка задачи интерполирования

Пусть дана табличная зависимость (табл. 2), где m – число экспериментальных точек.

Необходимо найти такую зависимость y=fn(x), для которой все значения в узлах интерполирования совпадают с табличными

(3)

i= 1, 2, …, m, где n=m-1 – порядок fn(xi).

Шагом интерполирования называется величина h, определяемая следующим соотношением:

.

Величина h может быть на всем рассматриваемом интервале постоянной (равностоящая интерполяция) и непостоянной (неравностоящая интерполяция). Значения f(xi) называются узлами интерполирования.

Положим, что

(4)

есть произвольная функциональная зависимость, в общем случае нелинейная относительно неизвестных коэффициентов a0, a1, ¼, an (число определяемых коэффициентов в общем случае не должно быть меньше числа экспериментальных точек).

Тогда задача интерполирования заключается в определении указанных коэффициентов исходя из условия (3) и нахождении межтабличных значений с использованием этой зависимости.

Рассмотрим функциональную зависимость, линейную относительно коэффициентов a0, a1, ¼, an. Одним из распространенных классов функций, используемых при интерполировании, является класс многочленов. Рассмотрим степенные многочлены. Функция f(x) при этом принимается в виде:

. (5)

При интерполировании многочленами число определяемых коэффициентов должно быть равно числу экспериментальных точек.







Дата добавления: 2014-11-12; просмотров: 728. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия