Краткие теоретические сведения. На практике очень часто зависимости между интересующими нас величинами задаются таблично, например, зависимость между температурой и ЭДС термопары задается в
На практике очень часто зависимости между интересующими нас величинами задаются таблично, например, зависимость между температурой и ЭДС термопары задается в виде градуировочных таблиц. В случае задания зависимости в виде таблицы нет возможности определения значений, находящихся между табличными значениями. Для решения данной задачи необходимо заменить таблично заданную зависимость аналитической зависимостью. Математическая постановка задачи интерполирования Пусть дана табличная зависимость (табл. 2), где m – число экспериментальных точек. Необходимо найти такую зависимость y=fn(x), для которой все значения в узлах интерполирования совпадают с табличными (3) i= 1, 2, …, m, где n=m-1 – порядок fn(xi). Шагом интерполирования называется величина h, определяемая следующим соотношением: . Величина h может быть на всем рассматриваемом интервале постоянной (равностоящая интерполяция) и непостоянной (неравностоящая интерполяция). Значения f(xi) называются узлами интерполирования. Положим, что (4) есть произвольная функциональная зависимость, в общем случае нелинейная относительно неизвестных коэффициентов a0, a1, ¼, an (число определяемых коэффициентов в общем случае не должно быть меньше числа экспериментальных точек). Тогда задача интерполирования заключается в определении указанных коэффициентов исходя из условия (3) и нахождении межтабличных значений с использованием этой зависимости. Рассмотрим функциональную зависимость, линейную относительно коэффициентов a0, a1, ¼, an. Одним из распространенных классов функций, используемых при интерполировании, является класс многочленов. Рассмотрим степенные многочлены. Функция f(x) при этом принимается в виде: . (5) При интерполировании многочленами число определяемых коэффициентов должно быть равно числу экспериментальных точек.
|