Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполирование степенными многочленами с использованием метода неопределенных коэффициентов





Запрограммируем в Mathcad решение примера 1.

1. Задаем системной переменной значение 1.

2. Задаем начальные значения экспериментальных массивов согласно табл. 3.

3. Задаем значение контрольной точки аргумента, в которой надо найти значение искомой функции:

4. Строим график экспериментальных значений (рис. 24).

Рис. 24. График экспериментальных значений

5. Так как имеем три экспериментальных точки, в качестве интерполирующей зависимости выберем степенной многочлен 2-го порядка

.

Пользуясь полученной формулой, составим систему линейных уравнений:

Данную систему запишем в векторно-матричной форме:

или

.

6. Решим полученную систему методом Крамера. Для этого сформируем 4 матрицы. Первая матрица С – главная матрица системы, остальные матрицы С0, С1 и С2 получаются из матрицы С путем замены 1-го, 2-го и 3-го столбца на вектор соответственно.

Следует отметить, что программирование осуществляется с использованием имен переменных, а не значений. Это позволит сделать программу универсальной и использовать её для решения других подобных задач в дальнейшем.

Далее контролируем заполнение матриц:

7. Осуществляем расчет определителя матрицы С согласно правилу миноров.

Для набора формулы используем панель Greek (Греческий алфавит) и Matrix (Матрицы). Следует учесть, что для обозначения элементов двумерной матрицы С используется два индекса, разделенных запятыми (первый нумерует строку, второй – столбец). Если формула выходит за пределы страницы документа, часть её необходимо подсветить

и нажать Ctrl+Enter. В результате формула разобьётся на две строки.

Если удалить подсвеченный красным местозаполнитель, формула будет рассчитываться автоматически, как и прежде.

Далее высвечиваем результат расчета

и осуществляем проверку нажатием кнопки Determinant (Вычисление определителя) на панели Matrix (Матрицы)

Аналогично осуществляем расчет и проверку расчета определителей матриц С0, С1 и С2.

8. Рассчитываем коэффициенты a0, a1, a2.

9. Используя найденные коэффициенты, задаем функцию yr(xk) для получения расчетных значений. Имя функции отличается от y(x), чтобы не испортить заданные в начале программы значения экспериментальных массивов x и y.

Высвечиваем расчетное значение функции в контрольной точке (как и ожидалось, оно находится между второй и третьей экспериментальными токами – 12 и 15):

10. Добавляем к построенному ранее графику экспериментальных значений расчетную кривую yr(x1). Для этого сначала вводим ранжированную переменную x1, которая позволит получить не три, а девять расчетных значений и построить более гладкий график функции, отраженный с помощью пунктирной линии (рис. 25). Значение контрольной точки отражаем на графике с помощью крестика.

Рис. 25. Графики, полученные при интерполировании методом

неопределенных коэффициентов







Дата добавления: 2014-11-12; просмотров: 610. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия