Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполирование степенными многочленами с использованием второй интерполяционной формулы Ньютона





Запрограммируем в Mathcad решение примера 4. Программировать будем также с использованием имен переменных, чтобы программа получилась универсальной.

1. Задаем системной переменной значение 1.

2. Задаем начальные значения экспериментальных массивов согласно табл. 3.

3. Строим график экспериментальных значений (рис. 26).

Рис. 26. График экспериментальных значений

4. Так как имеем три экспериментальных точки, в качестве интерполирующей зависимости выберем степенной многочлен 2-го порядка

.

Формула (11) для n =2 будет выглядеть следующим образом:

,

2 = у 3 – у 2,

D 2 у 1 =D у 2 – D у 1 = у 3 2 у 2 + у 1, h= 4.

Запрограммируем эти формулы в Mathcad, используя промежуточные переменные. Следует учесть при наборе следующие особенности:

1) индексы элементов экспериментальных массивов x и y набираются через клавишу; или с помощью кнопки Subscript (Нижний индекс) на панели Matrix (Матрицы);

2) имена переменных, обозначающих конечные разности, набираются в одну строку, без индексов.

Задаем функцию yr(xk) для получения расчетных значений. Имя функции отличается от y(x), чтобы не испортить заданные в начале программы значения экспериментальных массивов x и y.

Как видно, в расчетах не использовалось значение x1, поэтому точность интерполирования выше в конце таблицы.

5. Для того чтобы получить значения коэффициентов a0, a1 и a2, воспользуемся функцией parfrac. Для этого нажмем кнопку Convert to Partial Fractions Keywords (Преобразование в частичных долях) на панели Symbolic (Символы).

Присваиваем переменным a0, a1 и a2 значения согласно полученному выражению

и высвечиваем полученные значения коэффициентов

Использование пункта 5 в программе снижает её универсальность, т. к. при изменении исходных данных эти преобразования нужно будет провести вручную.

6. Используя найденные коэффициенты, задаем функцию yr(xk) для получения расчетных значений.

7. Задаем значение контрольной точки аргумента, в которой надо найти значение искомой функции:

8. Высвечиваем расчетное значение функции в контрольной точке (как и ожидалось, оно находится между второй и третьей экспериментальными токами – 12 и 15):

9. Добавляем к построенному ранее графику экспериментальных значений расчетную кривую yr(x1). Для этого сначала вводим ранжированную переменную x1, которая позволит получить не три, а девять расчетных значений и построить более гладкий график функции, отраженный с помощью пунктирной линии (рис. 27). Значение контрольной точки отражаем на графике с помощью крестика.

Рис. 27. Графики, полученные при интерполировании с помощью

второй интерполяционной формулы Ньютона







Дата добавления: 2014-11-12; просмотров: 591. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия