Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод неопределенных коэффициентов.





Методзаключается в том, что если в уравнение (5) подставить табличные значения , то определение коэффициентов сводится к решению системы m линейных уравнений:

(6)

относительно коэффициентов a0, a1, ¼, an.

Следует помнить, что m=n+1, где m – количество экспериментальных точек в таблице, n – количество определяемых коэффициентов.

Система (6) имеет единственное решение, поскольку определитель матрицы коэффициентов (определитель Вандермонда) отличен от «0». Для решения системы линейных уравнений (6) чаще всего используют методы Крамера, Гаусса, обращения матриц (см. пункт 6.2, стр. 92) и др.

Пример 1.Задание: интерполировать табличную зависимость, представленную в табл. 3. Найти значение y в контрольной точке x = 3.

Решение. Количество экспериментальных точек m= 3. Следовательно, порядок интерполяционного многочлена n =2. Для n =2 формула (3) будет выглядеть:

.

Пользуясь полученной формулой, составим систему линейных уравнений:

или, подставив табличные значения, получим:

Решив полученную систему уравнений одним из методов решения систем линейных уравнений (см. пункт 6.2, стр. 92), получим значения неизвестных коэффициентов a0= – 1, 59375, a1= 3, 8125, a2= – 0, 21875.

Тогда интерполяционная зависимость будет выглядеть:

.

При x =3 f2(x) =7, 875.

Другим способом определения коэффициентов уравнения (5), позволяющим избежать решение системы уравнений (6) является построение интерполяционных многочленов, обеспечивающих равенство расчетных и экспериментальных значений функций в заданных узлах интерполирования, то есть точках i, yi).







Дата добавления: 2014-11-12; просмотров: 654. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия