Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод неопределенных коэффициентов.





Методзаключается в том, что если в уравнение (5) подставить табличные значения , то определение коэффициентов сводится к решению системы m линейных уравнений:

(6)

относительно коэффициентов a0, a1, ¼, an.

Следует помнить, что m=n+1, где m – количество экспериментальных точек в таблице, n – количество определяемых коэффициентов.

Система (6) имеет единственное решение, поскольку определитель матрицы коэффициентов (определитель Вандермонда) отличен от «0». Для решения системы линейных уравнений (6) чаще всего используют методы Крамера, Гаусса, обращения матриц (см. пункт 6.2, стр. 92) и др.

Пример 1.Задание: интерполировать табличную зависимость, представленную в табл. 3. Найти значение y в контрольной точке x = 3.

Решение. Количество экспериментальных точек m= 3. Следовательно, порядок интерполяционного многочлена n =2. Для n =2 формула (3) будет выглядеть:

.

Пользуясь полученной формулой, составим систему линейных уравнений:

или, подставив табличные значения, получим:

Решив полученную систему уравнений одним из методов решения систем линейных уравнений (см. пункт 6.2, стр. 92), получим значения неизвестных коэффициентов a0= – 1, 59375, a1= 3, 8125, a2= – 0, 21875.

Тогда интерполяционная зависимость будет выглядеть:

.

При x =3 f2(x) =7, 875.

Другим способом определения коэффициентов уравнения (5), позволяющим избежать решение системы уравнений (6) является построение интерполяционных многочленов, обеспечивающих равенство расчетных и экспериментальных значений функций в заданных узлах интерполирования, то есть точках i, yi).







Дата добавления: 2014-11-12; просмотров: 654. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия