Математические модели
Основное требование, предъявляемое к математической модели, – адекватность рассматриваемому явлению, т. е. модель должна достаточно точно (в рамках допустимой погрешности) отражать характерные черты явления. Вместе с тем она должна обладать сравнительной простотой и доступностью исследования. При построении математических моделей получают некоторые математические соотношения (как правило, уравнения). Пример. Пусть в начальный момент времени t =0 тело находится на высоте h0 и начинает двигаться вниз (вертикально) с начальной скоростью u0. Требуется найти закон движения тела, т. е. построить математическую модель, которая позволила бы математически описать данную задачу и определить параметры движения в любой момент времени. Прежде чем строить указанную модель, нужно принять некоторые допущения, если они не заданы. В частности, предположим, что данное тело обладает средней плотностью, значительно превышающей плотность воздуха, а его форма близка к шару. В этом случае можно пренебречь сопротивлением воздуха и рассматривать свободное падение тела с учетом ускорения g. Соответствующие соотношения для высоты h и скорости u в любой момент времени t хорошо известны из школьного курса физики. Они имеют вид: (1) Эти формулы являются искомой математической моделью свободного падения тела. Область применения данной модели ограничена случаями, в которых сопротивлением воздуха можно пренебречь. Во многих задачах о движении тел в атмосфере модель (1) не может быть использована, поскольку при её применении мы получили бы неверный результат. К таким задачам относятся: движение капли, вход в атмосферу тел малой плотности, спуск на парашюте и др. Здесь необходимо построить более точную математическую модель, учитывающую сопротивление воздуха. Если обозначить через F(t) силу сопротивления, действующую на тело массой m, то его движение может быть описано с помощью уравнений: , (2) . Соотношения (2) являются математической моделью для задачи движения тела в атмосфере. Существуют и другие, более сложные модели подобных задач. Заметим, что модель (1) легко получается из модели (2) при F(t) =0. Адекватность и сравнительная простота модели не исчерпывают предъявленных к ней требований. Обратим ещё внимание на необходимость правильной оценки области применения математической модели. Отметим, что успех решения задачи в значительной степени определяется выбором математической модели. Здесь в первую очередь нужны глубокие знания в той области, к которой принадлежит поставленная задача. Кроме того, необходимы знания соответствующих разделов математики и возможностей ЭВМ.
|