Схема испытаний Бернулли
Со схемой испытаний Бернулли связано установление важных закономерностей теории вероятностей как математической науки, относящихся к сумме независимых случайных величин и представляющих закон больших чисел. Физическим содержанием закона больших чисел является устойчивость некоторых средних в массовых случайных явлениях. В узком смысле под законом больших чисел в теории вероятностей понимается ряд математических теорем, устанавливающих факт приближения средних характеристик большого числа испытаний к некоторым определенным постоянным. Важные теоремы, составляющие закон больших чисел, впервые были выведены для схемы испытаний Бернулли. Теорема Чебышева. Среднее арифметическое наблюдаемых значений случайной величины при достаточно большом числе испытаний приближается к ее математическому ожиданию. Теорема Бернулли. Частота случайного события при достаточно большом числе независимых испытаний в неизменных условиях приближается к вероятности его появления в отдельном испытании. Теорема Пуассона. Частота случайного события при достаточно большом числе независимых испытаний приближается к среднему арифметическому вероятностей его проявления в отдельных испытаниях. Центральная предельная теорема. Закон распределения суммы достаточно большого числа слагаемых, каждое из которых в отдельности сравнительно мало влияет на сумму, приближается к нормальному закону распределения.
Определение понятий «испытание» и «схема испытаний Бернулли» При рассмотрении схемы испытаний Бернулли в слово «испытание» вкладывается богатый и разнообразный смысл. Под испытанием будем понимать осуществление определенных условий, при наличии которых может наступить интересующее нас событие. Санитарно-демографические характеристики конкретной территории формируются в результате «осуществления определенных условий», которые приводят к конкретным уровням заболеваемости, смертности, детской смертности и других показателей. Эффективность воздействия изучаемого препарата может быть определена в результате «осуществления определенных условий», которые обеспечиваются исследователем при выборе соответствующего контингента, обеспечении требующихся внешних условий и планировании тактики проведения эксперимента. То обстоятельство, что в первом случае мы фиксируем сложившуюся без нашего активного участия картину, а во втором являемся ее создателями, для нас не играет сейчас никакой роли. Для нас сейчас важно то, что как в первом, так и во втором случае мы имеем дело с «осуществлением определенных условий», при наличии которых может «наступить интересующее нас событие». При этом в первом случае мы должны проследить судьбу каждого отдельного человека (заболел или не заболел, умер или остался жить и т.д.) из состава всего контингента. Во втором случае — судьбу каждого индивидуума из состава отобранного предварительно контингента. Но в обоих случаях мы имеем дело с испытанием. При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых одно и то же испытание или аналогичные испытания повторяются неоднократно. В результате каждого испытания может появиться или не появиться интересующее нас событие. Но нас интересует не появление события в каждом отдельном испытании, а общее число появления событий в серии испытаний. Так, при анализе заболеваемости нас интересует не судьба отдельного человека, а общее число заболеваний на данной территории, при исследовании нового препарата — эффективность его воздействия не на каждого отдельного индивидуума, а на отобранный контингент в целом. Теория вероятностей изучает общие закономерности в массовых случайных явлениях, в то время как врачу-клиницисту представляются одни частные случаи. Конечно, общие заключения не следует безоговорочно применять в каждом частном случае, но начиная рассмотрение каждого частного случая, нужно иметь в виду общие закономерности. Схема испытаний Бернулли — схема независимых испытаний, проводимых в неизменных условиях при наличии двух возможных исходов (успеха или неудачи). Рассмотрим каждую характеристику схемы отдельно. Несколько испытаний называются независимыми, если вероятность того или иного исхода каждого из испытаний не зависит от предыстории, т.е. от того, какие исходы имели предшествующие испытания. Это значит, что вероятность того или иного исхода не зависит от числа ранее появившихся интересующих нас событий. При зарегистрированной частоте рождений мальчиков, равной 0.52, будущему отцу, ожидающему наследника, вовсе нет причины горевать, узнав, что три четверти новорожденных, появившихся на свет в течение недели в том родильном доме, куда он отвез свою жену, — мальчики. Вероятность того, что у него появится наследник, не стала меньше от того, что до появления его ребенка в данном родильном доме в течение данного времени у других родителей появилось намного больше мальчиков, чем девочек. Вероятность, на которую рассчитывает этот отец, остается все той же и при оценке ее по достаточно большому числу наблюдений ошибки не будет. Неизменность условий позволяет считать, что вероятность появления интересующего нас события во всех испытаниях остается одной и той же. Рассматривая и анализируя санитарно-демографические характеристики, мы пренебрегаем отклонениями от усредненных условий и предполагаем, что вероятность заболеть или умереть остается одной и той же для любого индивидуума, входящего в состав контингента. Планируя проведение эксперимента с целью выявления эффективности действия препарата, мы заботимся об однородном подборе контингента, иначе эксперимент будет поставлен некорректно. Наличие только двух возможных исходов: успеха и неудачи — понятие очевидное. При анализе, например, заболеваемости это условие означает, что любой человек может только заболеть или не заболеть. Здесь судьба каждого отдельного человека на данном отрезке времени представляет собой отдельное испытание. При проведении эксперимента для оценки эффективности препарата мы фиксируем успех или неудачу, наблюдая за состоянием отдельного индивидуума, судьба которого и составляет отдельное испытание. Обследование новорожденных с целью определения их состава предполагает также два возможных исхода: рождение мальчика или девочки.
|