Эффективность
Несмещенность – желательное свойство оценок, но это не единственное такое свойство. Еще одна важная их сторона – это надежность. Конечно, немаловажно, чтобы оценка была точной в среднем за длительный период, но, как однажды заметил Дж. М. Кейнс, «в долгосрочном периоде мы все умрем». Мы хотели бы, чтобы наша оценка с максимально возможной вероятностью давала бы близкое значение к теоретической характеристике, что означает желание получить функцию плотности вероятности, как можно более «сжатую» вокруг истинного значения. Один из способов выразить это требование – сказать, что мы хотели бы получить сколь возможно малую дисперсию. Предположим, что мы имеем две оценки теоретического среднего, рассчитанные на основе одной и той же информации, что обе они являются несмещенными и что их функции плотности вероятности показаны на рис. A.7. Поскольку функция плотности вероятности для оценки более «сжата», чем для оценки , с ее помощью мы скорее получим более точное значение. Формально говоря, эта оценка более эффективна. Рис. A.7. Важно заметить, что мы использовали здесь слово «скорее». Даже хотя оценка более эффективна, это не означает, что она всегда дает более точное значение. При определенном стечении обстоятельств значение оценки может быть ближе к истине. Однако вероятность того, что оценка окажется более точной, чем , составляет менее 50%. Это напоминает вопрос о том, пользоваться ли ремнями безопасности при управлении автомобилем. Множество обзоров в разных странах показало, что значительно менее вероятно погибнуть или получить увечья в дорожном происшествии, если воспользоваться ремнями безопасности. В то же время не раз отмечались странные случаи, когда не сделавший этого индивид чудесным образом уцелел, но погиб бы, будучи пристегнут ремнями. Упомянутые обзоры не отрицают этого. В них лишь делается вывод, что преимущество на стороне тех, кто пользуется ремнями безопасности. Подобным же преимуществом обладает и эффективная оценка. (Неприятный комментарий: в тех странах, где пользование ремнями безопасности сделано обязательным, сократилось предложение для трансплантации почек людей, ставших жертвами аварий.) Мы говорили о желании получить оценку как можно с меньшей дисперсией, и эффективная оценка – это та, у которой дисперсия минимальна. Сейчас мы рассмотрим дисперсию обобщенной оценки теоретического среднего и покажем, что она минимальна в том случае, когда оба наблюдения имеют равные веса. Если наблюдения и независимы, теоретическая дисперсия обобщенной оценки равна: . (A.21) Мы уже выяснили, что для несмещенности оценки необходимо равенство единице суммы и . Следовательно, для несмещенных оценок и . (A.22) Поскольку мы хотим выбрать так, чтобы минимизировать дисперсию, нам нужно минимизировать при этом . Эту задачу можно решить графически или с помощью дифференциального исчисления. В любом случае минимум достигается при . Следовательно, также равно 0, 5. Итак, мы показали, что выборочное среднее имеет наименьшую дисперсию среди оценок рассматриваемого типа. Это означает, что оно имеет наиболее «сжатое» вероятностное распределение вокруг истинного среднего и, следовательно (в вероятностном смысле), наиболее точно. Строго говоря, выборочное среднее – это наиболее эффективная оценка среди всех несмещенных оценок. Конечно, мы показали это только для случая с двумя наблюдениями, но сделанные выводы верны для выборок любого размера, если наблюдения не зависят друг от друга. Два заключительных замечания: во-первых, эффективность оценок можно сравнивать лишь тогда, когда они используют одну и ту же информацию, например один и тот же набор наблюдений нескольких случайных переменных. Если одна из оценок использует в 10 раз больше информации, чем другая, то она вполне может иметь меньшую дисперсию, но было бы неправильно считать ее более эффективной. Во-вторых, мы ограничиваем понятие эффективности сравнением распределений несмещенных оценок. Существуют определения эффективности, обобщающие это понятие на случай возможного сравнения смещенных оценок, но в этом пособии мы придерживаемся данного простого определения.
|