Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несмещенность





Поскольку оценки являются случайными переменными, их значения лишь по случайному совпадению могут в точности равняться характеристикам генеральной совокупности. Обычно будет присутствовать определенная ошибка, которая может быть большой или малой, положительной или отрицательной, в зависимости от чисто случайных составляющих величин в выборке.

Хотя это и неизбежно, на интуитивном уровне желательно, тем не менее, чтобы оценка в среднем за достаточно длительный период была аккуратной. Выражаясь формально, мы хотели бы, чтобы математическое ожидание оценки равнялось бы соответствующей характеристике генеральной совокупности. Если это так, то оценка называется несмещенной. Если это не так, то оценка называется смещенной, и разница между ее математическим ожиданием и соответствующей теоретической характеристикой генеральной совокупности называется смещением.

Начнем с выборочного среднего. Является ли оно несмещенной оценкой теоретического среднего? Равны ли и ? Да, это так, что непосредственно вытекает из (A.18).

Величина включает две составляющие – и . Значение равно средней чисто случайных составляющих величин в выборке, и, поскольку математическое ожидание такой составляющей в каждом наблюдении равно нулю, математическое ожидание равно нулю. Следовательно,

. (A.19)

Тем не менее полученная оценка – не единственно возможная несмещенная оценка . Предположим для простоты, что у нас есть выборка всего из двух наблюдений – и . Любое взвешенное среднее наблюдений и было бы несмещенной оценкой, если сумма весов равна единице. Чтобы показать это, предположим, что мы построили обобщенную формулу оценки:

. (A.20)

Математическое ожидание равно:

. (A.21)

Если сумма и равна единице, то мы имеем и является несмещенной оценкой .

Таким образом, в принципе число несмещенных оценок бесконечно. Как выбрать одну из них? Почему в действительности мы всегда используем выборочное среднее с ? Возможно, вы полагаете, что было бы несправедливым давать разным наблюдениям различные веса или что подобной асимметрии следует избегать в принципе. Мы, однако, не заботимся здесь о справедливости или о симметрии как таковой. Дальше мы увидим, что имеется и более осязаемая причина.

До сих пор мы рассматривали только оценки теоретического среднего. Выше утверждалось, что величина , определяемая в соответствии с табл. А.6, является оценкой теоретической дисперсии . Можно показать, что математическое ожидание равно , и эта величина является несмещенной оценкой теоретической дисперсии, если наблюдения в выборке независимы друг от друга. Доказательство этого математически несложно, но трудоемко, и поэтому мы его опускаем.







Дата добавления: 2014-11-12; просмотров: 1296. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия