Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятность в непрерывном случае





С дискретными случайными переменными очень легко обращаться, поскольку они по определению принимают значения из некоторого конечного набора. Каждое из этих значений связано с определенной вероятностью, характеризующей его «вес». Если эти «веса» известны, то не составит труда рассчитать теоретическое среднее (математическое ожидание) и дисперсию.

Вы можете представить указанные «веса» как определенные количества «пластичной массы», равные вероятностям соответствующих значений. Сумма вероятностей и, следовательно, суммарный «вес» этой «массы» равен единице. Это показано на рис. A.1 для примера, где величина есть сумма очков, выпавших при бросании двух игральных костей. Величина принимает значения от 2 до 12, и для всех этих значений показано количество соответствующей «массы».

Рис. A.1.

К сожалению, анализ часто проводится для непрерывных случайных величин, которые могут принимать бесконечное число значений. Поскольку невозможно представить себе «пластичную массу», разделенную на бесконечное число частей, используем далее другой подход.

Проиллюстрируем наши рассуждения на примере температуры в комнате. Для определенности предположим, что она меняется в пределах от 55 до 75° по Фаренгейту, и вначале допустим, что все значения в этом диапазоне равновероятны.

Поскольку число различных значений, принимаемых показателем температуры, бесконечно, здесь бессмысленно пытаться разделить «пластичную массу» на малые части. Вместо этого можно «размазать» ее по всему диапазону. Поскольку все температуры от 55 до 75° F равновероятны, она должна быть «размазана» равномерно, как это показано на рис. A.2.

Рис. A.2.

В этом примере, как и во всех остальных, мы будем полагать, что «пластичная масса размазана» на единичной площади. Это связано с тем, что совокупная вероятность всегда равняется единице. В данном случае наша «масса» покрыла прямоугольник, и поскольку основание этого прямоугольника равно 20, его высота определяется из соотношения:

, (A.10)

так как произведение основания и высоты равно площади. Следовательно, высота равна 0, 05, как это показано на рисунке.

Найдя высоту прямоугольника, мы можем ответить на вопросы типа: с какой вероятностью температура будет находиться в диапазоне от 65 до 70°F? Ответ определяется величиной «замазанной» площади (или, говоря более формально, совокупной вероятностью), лежащей в диапазоне от 65 до 70°F, представленной заштрихованной фигурой на рис. A.3. Основание заштрихованного прямоугольника равно 5, его высота равна 0, 05 и, соответственно, площадь – 0, 25. Искомая вероятность равна 1/4, что в любом случае очевидно, поскольку промежуток от 65 до 70°F составляет 1/4 всего диапазона.

Рис. A.3.

Высота заштрихованной площади представляет то, что формально называется плотностью вероятности в этой точке, и если эта высота может быть записана как функция значений случайной переменной, то эта функция называется функцией плотности вероятности. В нашем примере она записывается как , где – температура, и

. (A.11)

В качестве первого приближения функция плотности вероятности показывает вероятность нахождения случайной переменной внутри единичного интервала вокруг данной точки. В нашем примере эта функция всюду равна 0, 05, откуда вытекает, что температура находится, например, между 60 и 61°F с вероятностью 0, 05.

В нашем случае график функции плотности вероятности горизонтален, и ее указанная интерпретация точна, однако в общем случае эта функция непрерывно меняется, и ее интерпретация дает лишь приближение. Далее мы рассмотрим пример, когда эта функция непостоянна, поскольку не все температуры равновероятны. Предположим, что центральное отопление работает таким образом, что температура никогда не падает ниже 65°F, а в жаркие дни температура превосходит этот уровень, не превышая, как и ранее, 75°F. Мы будем считать, что плотность вероятности максимальна при температуре 65°F и далее она равномерно убывает до нуля при 75°F (рис. A.4).

Рис. A.4.

Общая «замазанная» площадь, как всегда, равна единице, поскольку совокупная вероятность равна единице. Площадь треугольника равна половине произведения основания на высоту, поэтому получаем:

, (A.12)

и высота при 65°F равна 0, 20.

Предположим вновь, что мы хотим знать вероятность нахождения температуры в промежутке между 65 и 70°F. Она представлена заштрихованной площадью на рис. A.5, и если вы немного помните геометрию, то сможете проверить, что она равна 0, 75. Если вы предпочитаете процентное измерение, то это означает, что с вероятностью 75% температура попадет в диапазон 65-70°F и только с вероятностью 25% – в диапазон 70-75°F.

Рис. A.5.

В данном случае функция плотности вероятности записывается как , где

. (A.13)

Прежде чем продолжить изложение, упомянем о хорошей и плохой новостях. «Плохая новость» – это то, что если вы хотите рассчитать вероятности для более сложных функций с криволинейными графиками, то элементарная геометрия становится неприменимой. Вообще говоря, вы должны воспользоваться интегральным исчислением или специальными таблицами (если последние существуют). Интегральное исчисление используется также и при определении математического ожидания и дисперсии непрерывной случайной величины.

«Хорошая новость» – в том, что специальные таблицы существуют для всех функций, которые будут интересовать нас на практике. Кроме того, математическое ожидание и дисперсия имеют практически тот же смысл для непрерывных случайных величин, что и для дискретных, для них верны те же самые правила.







Дата добавления: 2014-11-12; просмотров: 545. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия