Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корневые методы





Как было рассмотрено в разд. 5, вид корней характеристического уравнения определяет характер переходных процессов в системе автоматического регулирования. Поэтому можно сформулировать требования по запасу устойчивости и быстродействию системы, не рассматривая сами переходные процессы, а накладывая определенные условия на корни характеристического уравнения.

Для оценки быстродействия системы используется понятие «степени устойчивости».Термин «степень устойчивости» не является удачным, и его следовало бы заменить термином «степень быстродействия». Это объясняется тем, что «степень устойчивости» никак не связана с удалением системы от границы устойчивости, определяемым по склонности системы к колебаниям, но этот термин используется в специальной литературе по ТАУ.

Под степенью устойчивости h понимается абсолютное значение вещественной части ближайшего к мнимой оси корня (рис. 7.6).

 

 

Рис. 7.6. Степень устойчивости

 

Могут быть два случая: когда ближайший корень является вещественным (рис. 7.6, а) и когда к оси мнимых ближе всего расположена пара комплексных корней (рис. 7.6, б).

Корни характеристического уравнения, расположенные ближе всего к оси мнимых, то есть имеющие наименьшую по абсолютной величине вещественную часть, дают в переходном процессе слагаемые (5.8)

, (7.25)

которые затухают наиболее медленно. В большинстве случаев переходный процесс можно считать закончившимся тогда, когда затухнет слагаемое, определяемое ближайшим к мнимой оси корнем. Если ближайшим к мнимой оси является вещественный корень, то составляющая в переходном процессе, от этого корня, будет иметь вид

. (7.26)

Допустив в конце переходного процесса (где Δ = 0, 01¸ 0, 05 – ошибка регулирования), можно получить приближенную зависимость между степенью устойчивости и временем переходного процесса

 

. (7.27)

 

Так, например, если принять Δ = 0, 05, то время переходного процесса составит

. (7.28)

 

Если ближайшей к мнимой оси является пара комплексных корней , то вместо (7.26) будем иметь

.(7.29)

В этом случае, допустив , нельзя в общем виде определить время переходного процесса, так как для этой цели потребовалось бы решить трансцендентное уравнение. Однако можно найти верхнюю границу переходного процесса, положив в этом уравнении . Тогда имеем:

. (7.30)

 

Таким образом, и в этом случае величина степени устойчивости будет определять быстроту затухания переходного процесса.

Важным обстоятельством является то, что степень устойчивости можно найти без вычисления значений корней характеристического уравнения. Для этой цели в характеристическом уравнении (5.6) переходят к новой переменной z = d + h. Подставляя в него d = z – h, получаем так называемое смещенное уравнение

. (7.31)

Раскрывая скобки в (7.31) и группируя подобные члены, имеем:

. (7.32)

Это уравнение соответствует смещению осей на плоскости корней (см. рис. 7.6) влево на величину h. В результате один (см. рис. 7.6, а) или два (см. рис. 7.6, б) корня попадают на ось мнимых, что соответствует границе устойчивости.

Для вычисления степени устойчивости необходимо применить к смещенному характеристическому уравнению (7.32) любой критерий устойчивости и определить при каком значении h получается граница устойчивости. Напомним, что апериодической границе устойчивости соответствует равенство нулю свободного члена характеристического уравнения

, (7.33)

а колебательной границе устойчивости соответствует равенство нулю предпоследнего определителя Гурвица, прохождение кривой Михайлова через начало координат.

Обратимся теперь к оценке запаса устойчивости системы автоматического регулирования. Склонность системы к колебаниям наблюдается, если в решении характеристического уравнения будут присутствовать комплексные корни вида . Эта склонность может характеризоваться отношением мнимой части корня (угловой частоты колебаний) к вещественной (коэффициенту затухания), которое называется колебательностью

. (7.34)

 

Колебательность связана с другим корневым показателем запаса устойчивости, так называемым затуханием. Комплексные сопряженные корни дают в выражении для переходного процесса (5.8) слагаемые вида

 

. (7.35)

Найдем затухание амплитуды синусоидального колебания за один период. При некотором значении времени t = t1 эта амплитуда составит

. (7.36)

Через один период имеем:

. (7.37)

 

Затуханием за период называют величину

. (7.38)

Эта величина обычно выражается в процентах. Подставляя значение амплитуды А2 в (7.38), имеем:

(7.39)

или

. (7.40)

 

Обычно в системах автоматического регулирования допускается затухание за один период не менее чем 90 – 98 %. Так например, если h = 98 %, то допустимая колебательность при этом составит

 

. (7.41)

 

Соответственно при h = 90 % получаем .

Задание определенной колебательности заставляет ограничивать область расположения корней двумя лучами (рис. 7.7, а), которые составляют с вещественной осью угол

. (7.42)

Колебательность системы можно определить без нахождения корней характеристического уравнения подобно тому, как это было рассмотрено выше по отношению к степени устойчивости.

 

 

Рис. 7.7. Область расположения корней

 

При задании допустимых значений колебательности и степени устойчивости область расположения корней должна ограничиваться также вертикальной прямой, проходящей параллельно оси мнимых на расстоянии h (рис. 7.7, б). Расположению корней в этой области соответствует соблюдению требуемого запаса устойчивости, определяемого величиной колебательности m (или затуханием h) и требуемой степенью устойчивости h, характеризующей быстродействие системы.

Использование корней характеристического уравнения для оценки качества регулирования является не совсем полным, так как вид переходного процесса определяется не только левой, но и правой частью дифференциального уравнения (4.14) или (4.15).

Для того чтобы учесть это обстоятельство, рассмотрим зависимость между регулируемой величиной и управляющим воздействием, записанное посредством передаточной функции замкнутой системы (4.17)

 

. (7.43)

 

Передаточная функция замкнутой системы представляет собой дробно-рациональную функцию

. (7.44)

 

Раскладывая числитель и знаменатель (7.44) на множители, имеем

 

. (7.45)

 

Корни числителя b1 – bm называются нулями передаточной функции, так как в точке р = bi передаточная функция обращается в нуль. Корни знаменателя a1 – an являются корнями характеристического уравнения, и они называются полюсами передаточной функции, то есть при р = ai передаточная функция обращается в бесконечность.

Полюса передаточной функции характеризуют левую часть дифференциального уравнения, а нули – правую. Задание области расположения полюсов и нулей позволяет более полно оценить вид переходного процесса. Не останавливаясь на подробном анализе, укажем без доказательства общие рекомендации, которых желательно придерживаться при выборе расположения полюсов и нулей передаточных функций.

1. Желательно располагать нули вблизи области расположения полюсов. Удаление нулей от области полюсов ведет к увеличению амплитуд собственных колебаний в переходном процессе.

2. Для уменьшения отклонений в переходном процессе часто бывает выгодно удалять полюсы друг от друга.

3. Приближение друг к другу не представляет опасности для тех полюсов, которые расположены далеко от мнимой оси.

Кроме этих рекомендаций, сохраняют свою силу ограничения на область расположения полюсов, накладываемые в связи с требованиями обеспечения определенного запаса устойчивости и быстродействия (см. рис. 7.7, б).

Необходимо отметить, что случай соответствует отсутствию нулей передаточной функции (7.44). В этом случае вид переходного процесса характеризуется только расположением полюсов.

 







Дата добавления: 2014-11-12; просмотров: 1383. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия