Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы исследования процессов в нелинейных системах





В предыдущих разделах были рассмотрены методы расчета линейных систем автоматического регулирования. Линейные системы получались как результат линеаризации реальных систем, в которых всегда в той или иной форме имеются определенные нелинейные зависимости. Бывают случаи, когда в одном или более звеньях не удается провести линеаризацию, или же специально вводятся какие-либо существенные нелинейности, необходимые для создания определенных свойств системы регулирования, например, зоны нечувствительности, повышенного быстродействия при отработке больших отклонений и т. д. В этом случае необходимо исследовать нелинейные системы. К таким системам, в частности относятся системы, содержащие звено релейного типа, сухим трением, звено с насыщением, с гистерезисной петлей и т. п. (см. рис. 2.1).

Общим методом исследования устойчивостинелинейных систем является так называемый прямой метод Ляпунова [1]. Здесь не будет описан этот метод ввиду того, что его применение к автоматическим системам часто вызывает трудности.

Протекание процесса регулирования в нелинейной системе может быть в ряде случаев найдено методом припасовывания (сшивания). Этот метод заключается в том, что все движение разбивается на участки по времени так, чтобы внутри каждого участка процесс описывался линейным дифференциальным уравнением (или легко интегрируемым нелинейным). Таким образом, получают различные решения для разных участков процесса во времени, причем начальными условиями для решения уравнения на каждом участке являются значения переменных, полученные в конце предыдущего участка. Уравнивание начальных и конечных значений последующего и предыдущего участков и представляет собой процесс припасовывания. При этом необходимо помнить, что если переход от одного участка к другому сопровождается приложением к системе каких-либо воздействий (например, включение силовых контактов группового контроллера вызывает приложение к двигателю напряжения), то возможно появление скачков некоторых производных (в этом случае бросок производной тока якоря).

Для построения процессов регулирования в нелинейных системах часто используются графические и графоаналитические расчетные методы. Одним из наиболее удобных и распространенных методов является метод Д.А. Башкирова. Он позволяет строить процессы при любом характере нелинейностей даже и тогда, когда они заданы не аналитически, а графически или в виде таблиц.

Полнее и быстрее всего можно произвести исследование процессов в нелинейных автоматических системах на ЭВМ. Для нелинейных систем ввиду больших трудностей аналитических и графических расчетов использование компьютеров имеет особое значение. Часто расчет автоматической системы при ее проектировании, то есть при выборе структуры и параметров системы, может предварительно производиться в линейном приближении. Затем для нескольких отобранных вариантов можно провести подробное исследование на ЭВМ с учетом имеющихся нелинейностей.

Однако в некоторых случаях ввиду существенных нелинейностей невозможно рассматривать систему в линеаризованном виде даже в качестве первого приближения. Поэтому необходимы расчетные методы, позволяющие вести расчет автоматических систем с учетом главнейших нелинейностей и вместе с тем сохраняющие простоту и наглядность, которые необходимы при инженерных расчетах. Для этой цели используются методы фазовой плоскости и гармонического баланса.

 







Дата добавления: 2014-11-12; просмотров: 629. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия