Методы исследования процессов в нелинейных системах
В предыдущих разделах были рассмотрены методы расчета линейных систем автоматического регулирования. Линейные системы получались как результат линеаризации реальных систем, в которых всегда в той или иной форме имеются определенные нелинейные зависимости. Бывают случаи, когда в одном или более звеньях не удается провести линеаризацию, или же специально вводятся какие-либо существенные нелинейности, необходимые для создания определенных свойств системы регулирования, например, зоны нечувствительности, повышенного быстродействия при отработке больших отклонений и т. д. В этом случае необходимо исследовать нелинейные системы. К таким системам, в частности относятся системы, содержащие звено релейного типа, сухим трением, звено с насыщением, с гистерезисной петлей и т. п. (см. рис. 2.1). Общим методом исследования устойчивостинелинейных систем является так называемый прямой метод Ляпунова [1]. Здесь не будет описан этот метод ввиду того, что его применение к автоматическим системам часто вызывает трудности. Протекание процесса регулирования в нелинейной системе может быть в ряде случаев найдено методом припасовывания (сшивания). Этот метод заключается в том, что все движение разбивается на участки по времени так, чтобы внутри каждого участка процесс описывался линейным дифференциальным уравнением (или легко интегрируемым нелинейным). Таким образом, получают различные решения для разных участков процесса во времени, причем начальными условиями для решения уравнения на каждом участке являются значения переменных, полученные в конце предыдущего участка. Уравнивание начальных и конечных значений последующего и предыдущего участков и представляет собой процесс припасовывания. При этом необходимо помнить, что если переход от одного участка к другому сопровождается приложением к системе каких-либо воздействий (например, включение силовых контактов группового контроллера вызывает приложение к двигателю напряжения), то возможно появление скачков некоторых производных (в этом случае бросок производной тока якоря). Для построения процессов регулирования в нелинейных системах часто используются графические и графоаналитические расчетные методы. Одним из наиболее удобных и распространенных методов является метод Д.А. Башкирова. Он позволяет строить процессы при любом характере нелинейностей даже и тогда, когда они заданы не аналитически, а графически или в виде таблиц. Полнее и быстрее всего можно произвести исследование процессов в нелинейных автоматических системах на ЭВМ. Для нелинейных систем ввиду больших трудностей аналитических и графических расчетов использование компьютеров имеет особое значение. Часто расчет автоматической системы при ее проектировании, то есть при выборе структуры и параметров системы, может предварительно производиться в линейном приближении. Затем для нескольких отобранных вариантов можно провести подробное исследование на ЭВМ с учетом имеющихся нелинейностей. Однако в некоторых случаях ввиду существенных нелинейностей невозможно рассматривать систему в линеаризованном виде даже в качестве первого приближения. Поэтому необходимы расчетные методы, позволяющие вести расчет автоматических систем с учетом главнейших нелинейностей и вместе с тем сохраняющие простоту и наглядность, которые необходимы при инженерных расчетах. Для этой цели используются методы фазовой плоскости и гармонического баланса.
|