Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка адекватности модели.





Воспользовавшись двенадцатью парами значений (Xt,Yt), t = 1,2,3,…,12 оценили уравнение регрессии

7,863 + 1,022*Xt,

где - оценки коэффициентов регрессии, случайные величины, для которых ранее вычислены оценки стандартного отклонения: Поэтому и сама регрессия , как сумма случайных величин есть величина случайная. С другой стороны у нас нет другого инструмента для предсказания, кроме как это уравнение регрессии. Пусть за пределами 12-ти пар значений (Xt,Yt) в нашем распоряжении имеется еще одна пара (Х13,Y13). Такую пару легко взять из листа «Задание» файла «Парная регрессия 1» в папке «ЛабРаб». Все исходные данные в вертикальных столбцах листа «Задание» (варианты В-4, В-7, В-10) моделируются по одним и тем же параметрам. Пусть это будут значения из таблицы с индексами Xp и Yp, и будем считать, что Yp нам недоступно. Тогда единственная в нашем случае возможность оценить значение Yp остается предсказать

Xp Yp
3,38 13,59

его через уравнение регрессии, подставив в него значение Xp = 3,38. Точечная оценка = 11,32. В данном случае ошибка предсказания равна и хотелось бы уяснить, является ли она допустимой с точки зрения точности использованной нами модели. Другое дело, устроит ли эта точность заказчика – лицо, принимающее решение. Но нам следует убедиться пока лишь в том, что эта ошибка укладывается в рамки статистической точности, гарантированной методом наименьших квадратов. Для этого оценим числовые характеристики ошибки. Убедимся, что математическое ожидание ошибки имеет нулевое значение.

Дисперсия ошибки прогноза запишется в следующем виде:

Так как и эта случайная величина состоит из суммы двух случайных величин: и , умноженной на константу , то ее дисперсия равняется сумме дисперсий и дисперсии , умноженной на квадрат константы . Оценки этих дисперсий известны [1]: и . Тогда дисперсия оценивается следующей формулой:

Дисперсия и ее оценка определена выше. Оценка дисперсии прогноза определяется формулой:

(2)

Рис.37

Формулу (2) можно преобразовать к виду, более удобному для расчета среднеквадратичного отклонения прогноза . Из обеих частей формулы (2) извлечем квадратный корень:

. Обозначим .

Тогда

Оценим дисперсию ошибки прогноза исходя из полученных ранее оценок:

, n = 12, Xp = 3,38., среднее значение Х, вычисленное с помощью функции СРЗНАЧ, равно ., .

Результаты оценки выполнены в Excel и представлены на рис. 37.

 

Исходные данные для задачи.

 

Данные о годовом располагаемом доходе и годовых расходах на личное потребление (в 1999 г., в условных единицах) 20 семей. Эти данные представлены в таблице 1.

 

Табл. 1.

i DPI C  
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

 

 

Литература.

 

1. Бывшев В.А. Введение в эконометрию. Часть 2.-М.: ФА при Правительстве РФ, 2003.







Дата добавления: 2015-10-19; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия