Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка адекватности модели.





Воспользовавшись двенадцатью парами значений (Xt,Yt), t = 1,2,3,…,12 оценили уравнение регрессии

7,863 + 1,022*Xt,

где - оценки коэффициентов регрессии, случайные величины, для которых ранее вычислены оценки стандартного отклонения: Поэтому и сама регрессия , как сумма случайных величин есть величина случайная. С другой стороны у нас нет другого инструмента для предсказания, кроме как это уравнение регрессии. Пусть за пределами 12-ти пар значений (Xt,Yt) в нашем распоряжении имеется еще одна пара (Х13,Y13). Такую пару легко взять из листа «Задание» файла «Парная регрессия 1» в папке «ЛабРаб». Все исходные данные в вертикальных столбцах листа «Задание» (варианты В-4, В-7, В-10) моделируются по одним и тем же параметрам. Пусть это будут значения из таблицы с индексами Xp и Yp, и будем считать, что Yp нам недоступно. Тогда единственная в нашем случае возможность оценить значение Yp остается предсказать

Xp Yp
3,38 13,59

его через уравнение регрессии, подставив в него значение Xp = 3,38. Точечная оценка = 11,32. В данном случае ошибка предсказания равна и хотелось бы уяснить, является ли она допустимой с точки зрения точности использованной нами модели. Другое дело, устроит ли эта точность заказчика – лицо, принимающее решение. Но нам следует убедиться пока лишь в том, что эта ошибка укладывается в рамки статистической точности, гарантированной методом наименьших квадратов. Для этого оценим числовые характеристики ошибки. Убедимся, что математическое ожидание ошибки имеет нулевое значение.

Дисперсия ошибки прогноза запишется в следующем виде:

Так как и эта случайная величина состоит из суммы двух случайных величин: и , умноженной на константу , то ее дисперсия равняется сумме дисперсий и дисперсии , умноженной на квадрат константы . Оценки этих дисперсий известны [1]: и . Тогда дисперсия оценивается следующей формулой:

Дисперсия и ее оценка определена выше. Оценка дисперсии прогноза определяется формулой:

(2)

Рис.37

Формулу (2) можно преобразовать к виду, более удобному для расчета среднеквадратичного отклонения прогноза . Из обеих частей формулы (2) извлечем квадратный корень:

. Обозначим .

Тогда

Оценим дисперсию ошибки прогноза исходя из полученных ранее оценок:

, n = 12, Xp = 3,38., среднее значение Х, вычисленное с помощью функции СРЗНАЧ, равно ., .

Результаты оценки выполнены в Excel и представлены на рис. 37.

 

Исходные данные для задачи.

 

Данные о годовом располагаемом доходе и годовых расходах на личное потребление (в 1999 г., в условных единицах) 20 семей. Эти данные представлены в таблице 1.

 

Табл. 1.

i DPI C  
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

 

 

Литература.

 

1. Бывшев В.А. Введение в эконометрию. Часть 2.-М.: ФА при Правительстве РФ, 2003.







Дата добавления: 2015-10-19; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия