Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1) Множество векторов в с обычным образом определенным скалярным произведением векторов (см





1) Множество векторов в с обычным образом определенным скалярным произведением векторов (см. свойства скалярного произведения) образует евклидово пространство.

2) Множество непрерывных на отрезке функций образует евклидово пространство, если скалярное произведение задается формулой:

Свойство 1) скалярного произведения очевидно, 2) и 3) следуют из линейности интеграла, 4) следует из того, что от неотрицательной функции неотрицателен и равен нулю только если .

3) Пространство упорядоченных вещественных чисел образует евклидово пространство со скалярным произведением, задаваемым следующей формулой: если и из , то

(1)

Свойство 1) − очевидно, свойства 2) и 3) следуют из определения сложения векторов в и умножения на число, т.е.

;

.

Свойство 4) следует из того, что и равно нулю лишь тогда когда , т.е. .

4) Пусть − матрица над ипусть – симметричная, т.е. . Для любого используем для построения выражения . Такое выражение называется квадратичной формой. Будем предполагать, что такая форма положительно определена, т.е. она больше нуля и равна нулю лишь если .

Такую матрицу можно использовать для задания скалярного произведения в следующим образом: ,

. (2)

Свойство 1) следует из симметричности матрицы , 2) и 3) − из свойств вещественных чисел, 4) − из положительной определенности соответствующей квадратичной формы.

Замечание. Формула (1) Þ из (2) при − единичная матрица.

Теорема 1 (неравенство Коши–Буняковского). Для любых элементов евклидового пространства справедливо неравенство:

. (3)

Неравенство (3) называется неравенством Коши–Буняковского.

Доказательство:По аксиоме 4) евклидова пространства справедливо

//так как квадратный трехчлен по неотрицателен дискриминант //

Определение 2. Линейное пространство называется нормированным, если определено правило, по которому ставится в соответствие вещественное число, называемое нормой (или длиной) указанного элемента и обозначаемое , удовлетворяющее следующим трем аксиомам:

1) .

2) .

3) справедливо (неравенство треугольника или неравенство Минковского).

Теорема 2. Всякое евклидово пространство является нормированным, если в нем норму элемента определить равенством

Доказательство: Проверим свойства нормированного пространства: аксиома 1) следует из 4) евклидова пространства, 2) следует из аксиом 1) и 3) евклидова пространства, 3) следует из неравенства Коши–Буняковского. Действительно,

. ■







Дата добавления: 2015-10-19; просмотров: 471. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия