Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дробная часть числа. Целая часть числа





Целой частью числа x называется наибольшее целое число r, не превышающее x.

Целая часть числа x обозначается символом [ x ] или (реже) E (x).

Если x принадлежит интервалу [ r; r +1), где r — целое число, то [ x ]= r, т.е. x находится в интервале [ [ x ]; [ x ]+1). Тогда, по свойствам числовых неравенств, разность x -[ x ] будет в интервале [0; 1). Число q = x - [ x ] называют дробной частью числа x и обозначают { x }. Следовательно, дробная часть числа всегда неотрицательна и не превышает 1, тогда как целая часть числа может принимать как положительные значения, так и неположительные. Таким образом { x } = x - [ x ], а следовательно x = [ x ] + { x }.

Например:

[5]=5 [7,2]=7 [-3]=-3 [-4,2]=-5 [0]=0
{5}=0 {7,2}=0,2 {-3}=0 {-4,2}=0,8 {0}=0

Функция целая часть числа имеет вид y = [ x ].

1. Областью определения является все множество действительных чисел

D([ x ]) = R.

2. Функция ни четная, ни нечетная. Область определения функции симметрична относительно начала координат, но если [ x ] = a, то [- x ] = -(a +1), т.е. не выполняется ни условие четности (f (- x) = f (x)), ни условие нечетности (f (- x) = - f (x)).

3. Функция y = [ x ] не периодическая.

4. Множество значений функции y = [ x ], это множество целых чисел (по определению целой части числа)

E ([ x ]) = Z

5. Функция неограничена, так как множество значений функции — все целые числа, множество целых чисел неограничено.

6. Функция разрывна.

7. Функция принимает значение 0 для всех x, принадлежащих интервалу [0;1), что следует из определения целой части числа. Следовательно, нулями функции будут все значения этого интервала.

8. Учитывая свойства целой части числа функция y = [ x ] принимает отрицательные значения при x меньших нуля, и положительные значения при x больших 1.

9. Функция y = [ x ] кусочно - постоянная и неубывающая.

10. Точек экстремума функция не имеет, так как не меняет характер монотонности.

11. Так как функция y = [ x ] постоянна на каждом интервале [ n; n +1), она не принимает наибольшего и наименьшего значений на области определения.

12. График функции.

 

 

Функция дробная часть числа имеет вид y = { x }.

1. Область определения этой функции все действительные числа

D({ x }) = R.

2. Функция ни четная, ни нечетная. Область определения функции симметрична относительно начала координат, но не выполняется ни условие четности (f (- x) = f (x)), ни условие нечетности (f (- x) = - f (x)).

3. Функция периодическая с наименьшим положительным периодом T = 1.

4. Функция y = { x } принимает значения на интервале [0;1), что следует из определения дробной части числа, т.е.

E({ x }) = [0; 1).

5. Из предыдущего свойства следует, что функция y = { x } ограничена.

6. Функция y = { x } непрерывна на каждом интервале [ n; n +1), где n — целое, в каждой точке n функция терпит разрыв.

7. Функция y = { x } обращается в 0 при всех целых значениях x, что следует из определения функции. То есть нулями функции будут все целочисленные значения аргумента.

8. Функция y = { x } на всей области определения принимает только положительные значения.

9. Функция строго монотонно возрастающая на каждом интервале [ n; n +1), где n — целое число.

10. Точек экстремума функция не имеет, так как не меняет характер монотонности.

11. Учитывая свойства 6 и 9, на каждом интервале [ n; n +1) функция y = { x } принимает минимальное значение в точке n.

12. График функции.

 







Дата добавления: 2015-10-19; просмотров: 1522. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия