Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИНАМІКА ОБЕРТАЛЬНОГО РУХУ.





Зміст лекції. Момент сили, момент інерції. Теорема Штайнера. Основне рівняння динаміки Обертального руху. Момент імпульсу, закон збереження моменту імпульсу.

Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс п материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, г.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис.23).

Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним - r+dr. Момент инерции каждого полого цилиндра dJ = r 2 dm (так как dr << r, то считаем, что расстояние всех точек ци­линдра от оси равно r), где dm - масса всего элементарного цилиндра; его объем 2p rh dr.

Если r - плотность материала, то dm= r.2p rh dr и dJ =2p h r r 3 dr. Тогда момент инерции сплошного цилиндра

но так как p R 2 h - объем цилиндра, то его масса m =p R 2 h r, а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции JC относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

J=JC+ma 2.

Моментом силы относительно неподвижной оси z называется скалярная величина Mz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью

Найдем выражение для работы при вращении тела (рис.27). Пусть сила F приложена в точке В, находящейся от оси вращения на расстоянии r,a- угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол d j точка приложения В проходит путь ds = rd j, и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая , можем записать

где Fr sin a= Fl = Mz - момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идет на увеличение его кинетической энергии:

dA=dT,

но поэтому Mzd j= Jzwdw,

Или Учитывая, что , получим

Єто уравнение представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство

где J - главный момент инерции тела (момент инерции относительно главной оси).

Момент импульса и закон его сохранения

При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы играет момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A; p = m v - импульс материальной точки (рис.28); L - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p.

Модуль вектора момента импульса

L = rp sin a= mvr sin a= pl,

где a - угол между векторами r и р, l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина L z, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Значение момента импульса L z не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса ri с некоторой скоростью v i. Скорость v i и импульс mi v i перпендикулярны этому радиусу, т.е. радиус является плечом вектора mi v i. Поэтому можем записать, что момент импульса отдельной частицы

Liz = miviri

и направлен по оси в сторону, определяемую правилом правого винта.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу vi =w ri, получим

т.е.

Lz = Jz w.

Таким образом, момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение по времени:

т. е.

Это выражение - еще одна форма уравнения (закона) динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Имеет место векторное равенство

В замкнутой системе момент внешних сил М =0 и , откуда

L =const.

Это выражение представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

Закон сохранения момента импульса - фундаментальный закон природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Моменты инерции для некоторых тел (тела считаются однородными),

Таблица 1

Тело Положение оси вращения Момент инерции
Полый тонкостенный цилиндр радиусом R Ось симметрии
Сплошной цилиндр или диск радиусом R То же
Прямой тонкий стержень длиной l Ось перпендикулярна стержню и проходит через его середину
Прямой тонкий стержень длиной l Ось перпендикулярна стержню и проходит через его конец
Шар радиусом R Ось проходит через центр шара

 

РЕЗЮМЕ

-Робота при обертанні тіла дорівнює добутку моменту діючої сили на кут повороту.

-Робота при обертанні тіла йде на збільшення його кінетичної енергії.

-Моментом інерції системи (тіла) відносно осі обертання називається фізична величина, рівна сумі добудків мас матеріальних точок системи на квадрати їх відстаней до вісі обертання. У випадку безперервного розподілу мас ця сума зводиться до інтеграла.

-Теорема Штейнера:момент інерції тіла відносно будь-якої осі обертання дорівнює моменту його інерції відносно паралельної осі, що проходить через центр мас тіла, складеному з добудком маси тіла на квадрат відстані між осями.

- Момент імпульсу твердого тіла відносно осі дорівнює добутку моменту інерції тіла відносно тієї ж осі на кутову швидкість







Дата добавления: 2015-10-19; просмотров: 720. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия