Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ускорение и его составляющие





 

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.

 
 

 


Средним ускорением неравномерного движения в интервале от t до t + D t называется векторная величина, равная отношению изменения скорости Du к интервалу времени D t:

(3.1)

Мгновенным ускорением a материальной точки в момент времени t будет предел среднего ускорения:

Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Тангенциальная составляющая ускорения:

т. е., равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Вторая составляющая ускорения:

В пределе при t + D t получим u1 ® u.

называется нормальной составляющей ускорения и направлена по нормали к траектории к центру её кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих (рис. 3.2.):

 

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения — быстроту изменения скорости по направлению (направлена к центру кривизны траектории).

 

 

В зависимости от тангенциальной и нормальной составляющих ускорения движение можно классифицировать следующим образом:

1) at =0, an =0 — прямолинейное равномерное движение;

2) at = a = const, an = 0 — прямолинейное равнопеременное движение.

При таком виде движения:

.

Если начальный момент времени t1 = 0, а начальная скорость u1 = uo, то обозначив t2 = t и u2 = u, получим , откуда:

.

Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдём, что длина пути, пройденного точкой, в случае равнопеременного:

;

3) at = f(t), an = 0 — прямолинейное движение с переменным ускорением;

4) at = 0, an = const. При at = 0 скорость по модулю не изменяется, а изменяется по направлению. Из формулы an=u2/r следует, что радиус кривизны должен быть постоянным. Следовательно, движение по окружности является равномерным;

5) at =0, an ¹; 0 — равномерное криволинейное движение;

6) at = const, an¹ 0 — криволинейное равнопеременное движение;

7) at =f(t), an¹; 0 — криволинейное движение с переменным ускорением.

 

 








Дата добавления: 2015-10-19; просмотров: 684. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия