Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Равноточные измерения





Измерения, выполняемые в одинаковых условиях по одной и той же методике, называют равноточными.

6.2.1 Простая арифметическая середина. Пусть в результате равноточных измерений величины, истинное значение которой L, получены ее значения l1, l2, …, ln. Тогда истинные погрешности измерений d1 = l1 – L, d2 = l2 – L, …, dn = ln – L. Сложив эти равенства, получим

[d] = [ l ] – nL.

Отсюда

где - среднее арифметическое или арифметическая середина.

Поскольку при n®¥ , следовательно , т.е. арифметическая середина из результатов измерений l1, l2, …, ln при неограниченном увеличении n стремится к истинному значению измеряемой величины L.

При конечном числе измерений арифметическая середина является наиболее точным значением измеряемой величины, а значение (X – L) называется случайной погрешностью простой арифметической середины.

6.2.2 Средняя квадратическая, относительная и предельная погрешности. При выборе критерия оценки точности наблюдений следует иметь ввиду, что на практике результат считается одинаково ошибочным, будет ли он больше или меньше истинного значения на некоторую величину. Поэтому за меру случайных погрешностей может быть принят критерий, который не зависел бы от знаков отдельных погрешностей и чутко отражал наличие в данном ряду измерений сравнительно крупных погрешностей. Таким требованиям удовлетворяет средняя квадратическая погрешность, определяемая по формуле Гаусса:

Отношение абсолютной погрешности (истинной или средней квадратической) к значению измеряемой величины называется относительной погрешностью. Относительной погрешностью характеризуют, как правило, линейные измерения. Она выражается правильной дробью, числитель которой равен единице:

Предельной погрешностью называется такое значение случайной погрешности, появление которого при данных условиях измерений маловероятно. Установлено, что случайная погрешность измерения может превысить среднюю квадратическую примерно в 32 случаях из 100, удвоенную среднюю квадратическую погрешность – в 4 случаях из 100, утроенную – в 3 случаях из 1000. Поэтому в топографо-геодезических работах за предельную допустимую величину погрешности обычно принимают удвоенную среднюю квадратическую погрешность.

6.2.3 Средняя квадратическая погрешность функции измеренных величин. Пусть дана функция общего вида y = f (x1, x2, …, xn), аргументы которой х1, х2, …, хп независимо измерены со средними квадратическими погрешностями т1, т2, … тп. В теории погрешностей измерений доказывается, что средняя квадратическая погрешность функции определяется из выражения:

где - частные производные данной функции, вычисленные для соответствующих значений аргументов.

Например: y = x × z, где величина х определена с погрешностью тх, а z – с погрешностью mz. Тогда имеем:

Тогда

My2 = x2×mz2 + z2×mx2

6.2.4 Средняя квадратическая погрешность простой арифметической середины. Представим формулу простой арифметической середины в виде:

Как видно, правая часть выражения представляет собой линейную функцию независимо измеренных аргументов l1, l2, …, ln. Тогда можно записать:

Поскольку величины l1, l2, …, ln измерены с одинаковой точностью, т.е. т1 = т2 = … = т, то выражение примет вид:

6.2.5 Средняя квадратическая погрешность измеренных величин по отклонениям их от простой арифметической середины. В большинстве случаев истинное значение L измеряемой величины неизвестно, поэтому для определения средней квадратической погрешности измерения невозможно использовать формулу . В таких случаях оценку точности измерений производят по уклонениям v отдельных измерений от простой арифметической середины.

Пусть имеем п измеренных значений величины l1, l2, …, ln, арифметическая середина которой . Тогда уклонения измеренных значений от арифметической середины будут

v1 = l1 – X; v2 = l2 – X;; vn = ln – X.

Сложив эти равенства, получим

[v] = [l] – nX.

Но nX = [l], следовательно [v] = 0, т.е. сумма уклонений отдельных результатов измерений от простой арифметической середины равна нулю. Зная уклонения v, можно вычислить среднюю квадратическую погрешность одного измерения по формуле Бесселя:

где [vv] – сумма квадратов уклонений измеренных значений величины от ее арифметической середины.

Средняя квадратическая погрешность арифметической середины с учетом этого запишется как







Дата добавления: 2015-10-19; просмотров: 1375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия