Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Равноточные измерения





Измерения, выполняемые в одинаковых условиях по одной и той же методике, называют равноточными.

6.2.1 Простая арифметическая середина. Пусть в результате равноточных измерений величины, истинное значение которой L, получены ее значения l1, l2, …, ln. Тогда истинные погрешности измерений d1 = l1 – L, d2 = l2 – L, …, dn = ln – L. Сложив эти равенства, получим

[d] = [ l ] – nL.

Отсюда

где - среднее арифметическое или арифметическая середина.

Поскольку при n®¥ , следовательно , т.е. арифметическая середина из результатов измерений l1, l2, …, ln при неограниченном увеличении n стремится к истинному значению измеряемой величины L.

При конечном числе измерений арифметическая середина является наиболее точным значением измеряемой величины, а значение (X – L) называется случайной погрешностью простой арифметической середины.

6.2.2 Средняя квадратическая, относительная и предельная погрешности. При выборе критерия оценки точности наблюдений следует иметь ввиду, что на практике результат считается одинаково ошибочным, будет ли он больше или меньше истинного значения на некоторую величину. Поэтому за меру случайных погрешностей может быть принят критерий, который не зависел бы от знаков отдельных погрешностей и чутко отражал наличие в данном ряду измерений сравнительно крупных погрешностей. Таким требованиям удовлетворяет средняя квадратическая погрешность, определяемая по формуле Гаусса:

Отношение абсолютной погрешности (истинной или средней квадратической) к значению измеряемой величины называется относительной погрешностью. Относительной погрешностью характеризуют, как правило, линейные измерения. Она выражается правильной дробью, числитель которой равен единице:

Предельной погрешностью называется такое значение случайной погрешности, появление которого при данных условиях измерений маловероятно. Установлено, что случайная погрешность измерения может превысить среднюю квадратическую примерно в 32 случаях из 100, удвоенную среднюю квадратическую погрешность – в 4 случаях из 100, утроенную – в 3 случаях из 1000. Поэтому в топографо-геодезических работах за предельную допустимую величину погрешности обычно принимают удвоенную среднюю квадратическую погрешность.

6.2.3 Средняя квадратическая погрешность функции измеренных величин. Пусть дана функция общего вида y = f (x1, x2, …, xn), аргументы которой х1, х2, …, хп независимо измерены со средними квадратическими погрешностями т1, т2, … тп. В теории погрешностей измерений доказывается, что средняя квадратическая погрешность функции определяется из выражения:

где - частные производные данной функции, вычисленные для соответствующих значений аргументов.

Например: y = x × z, где величина х определена с погрешностью тх, а z – с погрешностью mz. Тогда имеем:

Тогда

My2 = x2×mz2 + z2×mx2

6.2.4 Средняя квадратическая погрешность простой арифметической середины. Представим формулу простой арифметической середины в виде:

Как видно, правая часть выражения представляет собой линейную функцию независимо измеренных аргументов l1, l2, …, ln. Тогда можно записать:

Поскольку величины l1, l2, …, ln измерены с одинаковой точностью, т.е. т1 = т2 = … = т, то выражение примет вид:

6.2.5 Средняя квадратическая погрешность измеренных величин по отклонениям их от простой арифметической середины. В большинстве случаев истинное значение L измеряемой величины неизвестно, поэтому для определения средней квадратической погрешности измерения невозможно использовать формулу . В таких случаях оценку точности измерений производят по уклонениям v отдельных измерений от простой арифметической середины.

Пусть имеем п измеренных значений величины l1, l2, …, ln, арифметическая середина которой . Тогда уклонения измеренных значений от арифметической середины будут

v1 = l1 – X; v2 = l2 – X;; vn = ln – X.

Сложив эти равенства, получим

[v] = [l] – nX.

Но nX = [l], следовательно [v] = 0, т.е. сумма уклонений отдельных результатов измерений от простой арифметической середины равна нулю. Зная уклонения v, можно вычислить среднюю квадратическую погрешность одного измерения по формуле Бесселя:

где [vv] – сумма квадратов уклонений измеренных значений величины от ее арифметической середины.

Средняя квадратическая погрешность арифметической середины с учетом этого запишется как







Дата добавления: 2015-10-19; просмотров: 1375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия