Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное векторное пространство





Упорядоченная система из n чисел a = () называется n - мерным вектором, а числа называются компонентами вектора a.

Векторы a = () и b = () будут считаться равными, если .

Суммой векторов a и b называется вектор a + b = ().

Вектор 0 = ( 0,0,…,0) называется нулевым.

Вектором, противоположным вектору a, назовем вектор -a =().

Произведением вектора a на число k называется вектор ka = ().

Вектор b называется линейной комбинацией векторов a1, a2, …, as, если существуют такие числа р1, р2, …, рs, что b = р1a1+ р2a2 + … + рsas.

Система векторов a1 , a2, …, as линейно зависима, если существуют такие числа р1, р2, …, рs, хотя бы одно из которых отлично от нуля, когда имеет место равенство р1a1+ р2a2 + … + рsas = 0,в противном случаи система линейно зависима.

Система из n векторов образует базис линейного n - мерного пространства, если они линейно независимые и любой другой вектор линейного пространства является их линейной комбинацией.

Система векторов e1=(1, 0, …, 0), e2=(0, 1, …, 0), …, en=(0, 0, …, 1), которые называются единичными, образует базис n - мерного векторного пространства.

Доказать, что система векторов образует базис в R3, и найти координаты вектора в этом базисе.

Рассмотрим равенство . Оно эквивалентно следующей линейной однородной системе:

, т.к. определитель системы ,

то система имеет только нулевое решение и, следовательно, векторы

- линейно независимые.

Теперь покажем, что любой вектор из R3 можно представить в виде их линейной комбинации, т.е. , и тем самым докажем, что векторы образуют базис в R3, а есть координаты вектора в новом базисе.

Действительно записанное ранее векторное равенство эквивалентно следующей линейной системе:

. Так как определитель системы , то, по правилу Крамера, система имеет решение при любой правой части, а это означает, что любой вектор из R3 можно выразить через векторы , т.е эти векторы образуют базис.

Теперь найдем координаты вектора в этом базисе, для чего запишем систему: . Решая ее, получим

Следовательно, в новом базисе вектор имеет координаты .

Пусть дана матрица А = .

Строки матрицы можно рассматривать как n - мерные векторы, которые могут быть линейно зависимые.

Максимальное число линейно независимых строк матрицы А называется рангом этой матрицы.

Пусть дана система линейных уравнений

и ее матрица А = .

Построим так называемую “расширенную” матрицу,

= .

Система линейных уравнений тогда и только тогда совместна, когда ранг расширенной матрицы равен рангу матрицы А.

Совместная система тогда и только тогда обладает единственным решением, когда ранг матрицы А равен числу неизвестных.







Дата добавления: 2015-10-19; просмотров: 454. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия