Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тригонометрическая форма комплексного числа





Комплексное число можно представить в виде упорядоченной пары -радиус- вектор на комплексной плоскости с началом в начале координат и с концом в точке . При этом радиус-вектор или комплексное число характеризуется модулем или длиной вектора = , с углом наклона к оси абсцисс. Будем называть главным значением аргумента или аргументом, если . Обозначается .

При этом положителен, если он отсчитывается от положительного направления оси абсцисс против часовой стрелки, и отрицателен, если наоборот. Ясно, что . Отсюда получаем тригонометрическую форму комплексного числа :

 

Используя разложение функций и в ряды Тейлора, можно показать, что

(формула Эйлера)

Если заданы и , то аргумент находится следующим образом:

Точка z лежит в первой четверти комплексной плоскости, . Тогда . Точка z лежит во второй четверти комплексной плоскости, . Тогда . Точка z лежит в третьей четверти комплексной плоскости, . Тогда . Точка z лежит в четвертой четверти комплексной плоскости, . Тогда .

Рассмотрим частные случаи:

Если , точка лежит на оси справа от начала координат, тогда . Если , точка лежит на оси выше начала координат, тогда . Если , точка лежит на оси слева от начала координат, тогда . Если , точка лежит на оси ниже начала координат, тогда .

Если, , точка лежит в четвертой четверти, . Если , точка лежит в первой четверти, . Если , точка лежит во второй четверти, . Если , точка лежит в четвертой четверти, . Если , точка лежит в третьей четверти, .

Можно показать, что, если , , то

 

,

 

в частности, если умножим число само на себя раз, получим формулу Муавра

 

 

Пример 10. Записать в тригонометрической форме числа

1) ; 2)

Решение. 1) . Отсюда

2) . Отсюда

В следующих двух примерах применим формулу Муавра.

Пример 11. Найти

Решение.

Пример 12. Найти

Решение. Имеем

 







Дата добавления: 2015-10-19; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия