Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Знакочередующиеся ряды





 

Ряд вида , где (5) называется знакочередующимся рядом.

Признак Лейбница. Если члены ряда (5) по модулю монотонно убывают с ростом , то есть , начиная с некоторого n и , то ряд (5) сходится. Если нарушено хотя бы одно из указанных условий, то ряд расходится.

Пример. Даны числовые ряды:

А)

В)

Выяснить характер сходимости этих рядов. Ответ. А сходится, В расходится.

Решение. Для ряда А модулем общего члена ряда является . Ясно, что он монотонно уменьшается, начиная с n=1, . Условия признака Лейбница выполнены, следовательно ряд А сходится.

Для ряда В модулем общего члена ряда является . Очевидно, что второе условие признака Лейбница не выполнено, так как , следовательно ряд В расходится.

 

Определение. Знакочередующийся ряд сходится абсолютно, если сходится ряд составленный из абсолютных значений его членов, то есть если сходится ряд .

Утверждение. Если знакочередующийся ряд сходится абсолютно, то он просто сходится, то есть справедлива схема:

-сходится - сходится

Определение. Если ряд сходится, а ряд расходится (расходится абсолютно), то говорят, что ряд сходится условно.

Пример. Укажите правильное утверждение относительно сходимости знакочередующихся рядов:

А) и В) . Ответ. А расходится, В сходится условно.

Обоснование. , то есть нарушено второе условие признака Лейбница, следовательно ряд А расходится. Относительно ряда В). Так как коэффициенты убывают монотонно с ростом и , то есть выполнены оба условия признака Лейбница, ряд В) сходится. Но ряд расходится, следовательно ряд В) сходится условно.

 







Дата добавления: 2015-10-19; просмотров: 632. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия