Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование подведением под знак дифференциала.





Для использования метода запишем таблицу дифференциалов, которая легко получается из таблицы производных и таблицы интегралов. В первом случае применяем формулы для дифференциалов функции, записанных в обратном порядке, во втором – путем взятия знака дифференциала от обеих частей равенства. Таблица дифференциалов.

1. 8.

2. 9.

3. 10.

4. 11

5. 12.

6. 13.

7.

Примечание.

Формулы для дифференциалов функции не меняются от того является ли x независимой переменной или есть некоторая функция u(t) другой независимой переменной t. (свойства инвариантности формы первого дифференциала)

Поэтому таблица дифференциалов будет иметь место, если вместо x подставить u(t). C помощью формулы для дифференциала функции записанной в обратном порядке

некоторые интегралы могут быть сведены к виду

, которые легко сводятся к табличным. Здесь .

Указанное преобразование называется «Подведение под знак дифференциала».

Примеры. 1) = = = =

= =

2) = = .

3) = = =

4) = = =arcsin()+ C

5) =

= =

2. Метод подстановки.

Иногда удается подобрать в качестве новой переменной такую дифференцируемую функцию , что имеет место равенство f(x)dx = q( (x)) (x)dx, причем интеграл легко вычисляется. Таким образом:

=

Указанный прием вычисления интеграла называется интегрирование методом замены переменной.

 

 

Примеры.

1) (6x-5)dx. Подстановка

2) ; подстановка t=ax+b,

тогда dt=d(ax+b)=(ax+b dx=adx, dx= ,

= =

3) .

Подстановка

=

4) ; подстановка

5) ; подстановка







Дата добавления: 2015-10-19; просмотров: 621. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия