Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие определённого интеграла, свойства, основные правила и приемы интегрирования.





Пусть определена на сегменте

Определение. Разбиение сегмента задано, если заданы точки такие, что

Обозначим через длину частичного сегмента Максимальную из этих длин обозначим которую назовём диаметром разбиения В частичном сегменте выберем произвольную точку

Определение. Выражение называется интегральной суммой и обозначается

Определение. Число называется пределом интегральных сумм при стремлении диаметра разбиений к нулю, если для любого существуют такие что из условия при любом выборе промежуточных точек следует неравенство . При этом пишут

Определение. Функция называется интегрируемой на сегменте если для этой функции существует предел её интегральных сумм при стремлении диаметра разбиений к нулю.

Число называется определённым интегралом от функции в пределах от а до в и обозначается

Числа и – пределы интегрирования ( – нижний предел, – верхний предел).

Примечание. Переменную х под знаком определённого интеграла

можно заменить на любую другую переменную: и т.д.

Теорема. Если функция непрерывна на сегменте , то она интегрируема на нём.

Пример. 1. Путь S, пройденный точкой за время со скоростью , есть S= .

2. Работа А, совершаемая над материальной точкой переменной силой f(x), есть .

3. Площадь криволинейной трапеции, ограниченной сверху графиком неотрицательной непрерывной функции ,

снизу – осью Ох, с боков – прямыми равна







Дата добавления: 2015-10-19; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия