Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Знакоположительные числовые ряды





 

Определение. Числовой ряд называется знакоположительным, если все .

Рассмотрим знакоположительный ряд вида . (1)

Ряд сходится, если и расходится, если .

Примеры сходящихся рядов: , .

Примеры расходящихся рядов: .

Примечание: По отношению к ряду при заключение о его поведении

не изменяется, то есть, он сходится, если и расходится, если .

Рассмотрим ряд вида , (2)

где - многочлен степени m относительно переменного натурального n с действительными коэффициентами ,

- многочлен степени k относительно переменного натурального n c действительными коэффициентами

При этом числа неотрицательные целые числа, не равные одновременно нулю.

Например - многочлен степени 3, - многочлен степени 4.

 

Утверждение. Если , (3)

то ряд (2) сходится, в противном случае, то есть когда , (4)

то ряд (2) расходится.

Пример. Ряд расходится, так как и выполнено условие (4).

 

Пример. Ряд сходится, так как и выполнено условие (3).

Пример. Ряд сходится, так как и выполнено условие (3).

Пример. расходится, так как и выполнено условие (4).

Пример. расходится, так как и выполнено условие (4).

Пример. Найти .

Решение.

 

 

Признак сравнения. Пусть даны два знакоположитедьных ряда A) В) .

Если , где , то ряды А и В сходятся или расходятся одновременно.

Пример. Указать сходящиеся числовые ряды.

 

1) 2) 3) 4)

Решение. Для сравнения возьмем ряд . Ясно, что в (1) надо взять , в (2) надо взять , в (3) надо взять , в (4) надо взять . Это делается из следующих соображений: В (1) отбрасывается слагаемое , в (2) отбрасывается -4, в (3) отбрасывается в (4) отбрасывается . После этого остаются ряды ,

, , или после преобразований , , , . Отсюда ряд (1) сходится так как, . Ряд (2) расходится так,как .

Ряд (3) расходится так,как . Ряд (4) сходится так,как .

С использованием признака сравнения заключение о характере сходимости ряда

проводится следующим образом: в многочленах и оставим старшие члены, то есть слагаемые и . В результате получим ряд , где - постоянная. Отсюда при или то же самое , ряд сходится

и при или , ряд расходится.

 

 







Дата добавления: 2015-10-19; просмотров: 492. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия