Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Знакоположительные числовые ряды





 

Определение. Числовой ряд называется знакоположительным, если все .

Рассмотрим знакоположительный ряд вида . (1)

Ряд сходится, если и расходится, если .

Примеры сходящихся рядов: , .

Примеры расходящихся рядов: .

Примечание: По отношению к ряду при заключение о его поведении

не изменяется, то есть, он сходится, если и расходится, если .

Рассмотрим ряд вида , (2)

где - многочлен степени m относительно переменного натурального n с действительными коэффициентами ,

- многочлен степени k относительно переменного натурального n c действительными коэффициентами

При этом числа неотрицательные целые числа, не равные одновременно нулю.

Например - многочлен степени 3, - многочлен степени 4.

 

Утверждение. Если , (3)

то ряд (2) сходится, в противном случае, то есть когда , (4)

то ряд (2) расходится.

Пример. Ряд расходится, так как и выполнено условие (4).

 

Пример. Ряд сходится, так как и выполнено условие (3).

Пример. Ряд сходится, так как и выполнено условие (3).

Пример. расходится, так как и выполнено условие (4).

Пример. расходится, так как и выполнено условие (4).

Пример. Найти .

Решение.

 

 

Признак сравнения. Пусть даны два знакоположитедьных ряда A) В) .

Если , где , то ряды А и В сходятся или расходятся одновременно.

Пример. Указать сходящиеся числовые ряды.

 

1) 2) 3) 4)

Решение. Для сравнения возьмем ряд . Ясно, что в (1) надо взять , в (2) надо взять , в (3) надо взять , в (4) надо взять . Это делается из следующих соображений: В (1) отбрасывается слагаемое , в (2) отбрасывается -4, в (3) отбрасывается в (4) отбрасывается . После этого остаются ряды ,

, , или после преобразований , , , . Отсюда ряд (1) сходится так как, . Ряд (2) расходится так,как .

Ряд (3) расходится так,как . Ряд (4) сходится так,как .

С использованием признака сравнения заключение о характере сходимости ряда

проводится следующим образом: в многочленах и оставим старшие члены, то есть слагаемые и . В результате получим ряд , где - постоянная. Отсюда при или то же самое , ряд сходится

и при или , ряд расходится.

 

 







Дата добавления: 2015-10-19; просмотров: 492. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия