Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принцип вложенных отрезков





Множество числовых отрезков { }

называется системой вложенных отрезков, если справедливы следующие неравенства:

,

то есть если

Теорема о пересечении системы вложенных отрезков
Всякая система вложенных отрезков имеет непустое пересечение

 

w Пусть имеем систему вложенных отрезков. Обозначим - множество всех левых концов, - множество всех правых концов.

Из неравенств, определяющих вложенные отрезки, следует, что

по свойству непрерывности множества заключаем, что существует число , такое что выполняется неравенство .

В частности, последнее неравенство выполняется при , т.е.

Следовательно, число с принадлежит всем отрезкам , поэтому это число принадлежит их пересечению. Таким образом доказано, что пересечение вложенных отрезков не является пустым. v

Можно сформулировать условие, при котором пересечение системы вложенных отрезков состоит лишь из единственной точки.

Длины отрезков называются длинами отрезков, стремящимися к нулю, если для любого числа существует номер , такой что при всех выполняется неравенство .

Теорема о пересечении вложенных отрезков, длины которых стремятся к нулю
Для всякой системы вложенных отрезков , длины которых стремятся к нулю, существует единственная точка , принадлежащая всем отрезкам данной системы.

 

w По предыдущей теореме о пересечении вложенных отрезков имеем, что . Предположим, что существуют две точки и , принадлежащие пересечению всех отрезков: и .

Тогда величина расстояния между числами и не превышает длины любого из этих отрезков: .

Но так как длины всех отрезков стремятся к нулю, то есть становятся меньше любого наперед заданного числа , то величина расстояния между числами и также меньше числа : .

Здесь - это произвольное, сколь угодно малое число, поэтому неравенство возможно только в случае .

Таким образом доказано, что существует единственное число с, принадлежащее всем вложенным отрезкам, длины которых стремятся к нулю: v

Замечания (к принципу вложенных отрезков)

1. Для интервалов и полуинтервалов множества аналог принципа вложенных отрезков не имеет места.

Например, , то есть система вложенных интервалов или полуинтервалов может иметь пустое пересечение

2. Для множества одних только рациональных чисел утверждения принципа вложенных отрезков не являются верными. При этом под отрезком понимается пересечение обычного отрезка, концы которого являются рациональными числами, с множеством рациональных чисел, т.е.

.

Например, рассмотрим , где - десятичные приближения соответственно с недостатком и избытком числа , имеющие по знаков после запятой:

, ,

Тогда , так как .







Дата добавления: 2015-10-19; просмотров: 1446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия