Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определения ограниченности множества





Рассмотрим некоторое непустое подмножество X множества .

Определения ограниченности множества ограниченного сверху множества; ограниченного снизу множества; ограниченного множества
1. Множество называют ограниченным сверху множеством, если $ число , такое что для выполняется неравенство : (1) Число b называется в этом случае числом, ограничивающим сверху множество X.
2. Множество называют ограниченным снизу множеством, если $ число , такое что для выполняется неравенство : (2) Число a называется в этом случае числом, ограничивающим снизу множество X.
3. Множество, ограниченное сверху и снизу, называется ограниченным множеством: (3)

 

Множество X, не являющееся ограниченным сверху, называется неограниченным сверху множеством, то есть

. (1')

Множество X, не являющееся ограниченным снизу, называется неограниченным снизу множеством, то есть

. (2')

Множество, не являющееся ограниченным, называют неограниченным множеством, т. е. неограниченное множество является неограниченным сверху или неограниченным снизу или неограниченным и сверху и снизу.

Пример 1 (описания ограниченности множеств)

1) — неограниченное множество, т. к. ограничено снизу (), но не является ограниченным сверху;

2) — ограничено, так как ограничено и

сверху и снизу: .

Замечание (к определениям ограниченности множества)

1. Очевидно из определений (1), (2), (3), что если множество X обладает свойством ограниченности (сверху, снизу или в целом), то можно указать сколько угодно чисел a и (или) b, ограничивающих это множество сверху и (или) снизу. Например, для ограниченного снизу множества выполняется не только неравенство , но и неравенства , , ,… Поэтому все числа a, ограничивающие это множество снизу, образуют множество .
2. Сравните определения (1) и (1'), (2) и (2'). Записи (1) и (2) определяют качество ограниченности, записи (1') и (2') определяют отрицание ограниченности, но определяют в позитивной форме, то есть без частицы “не”. Заметьте, что при определении отрицания некоторого понятия символ существования ($) заменяется на символ всеобщности ("), а символ всеобщности заменяется на символ существования. Это есть одно из правил формальной логики, которым пользуются при построении отрицаний в позитивной форме.






Дата добавления: 2015-10-19; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия