Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема о существовании точных граней ограниченного множества





Теорема о существовании точных граней ограниченного множества
Всякое ограниченное сверху непустое числовое множество имеет точную верхнюю грань, а всякое ограниченное снизу непустое числовое множество имеет точную нижнюю грань.

 

 

w Пусть ограничено сверху, .

Обозначим В — множество чисел, ограничивающих сверху множество Х, (рис. 27). Рис. 27

Если и , то из определения числа, ограничивающего множество сверху, следует, что и это верно для .

По свойству непрерывности множества заключаем, что существует число b, такое что выполняется неравенство для и для .

Но так как ограничивает Х сверху; так как для , то b является наименьшим среди всех чисел, ограничивающих множество Х сверху.

Поэтому по определению точной верхней грани множества получается, что , ч. т. д.

Вторая часть теоремы доказывается аналогичным образом. v

Замечание (к понятию точных граней множества)

1. Для неограниченных сверху множеств часто записывают «», а для неограниченных снизу ­­– «».

2. Если , то обозначается , то есть если точная верхняя грань множества принадлежит этому множеству, то она называется максимумом множества.

Аналогично, если , то обозначается , то есть если точная нижняя грань множества принадлежит этому множеству, то она называется минимумом множества.

Пример 3 (определение максимума и минимума множества)

1) ;

2)

min A не существует;

3) max B и min B не существуют.







Дата добавления: 2015-10-19; просмотров: 1092. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия