Студопедия — Образы и прообразы множеств при отображениях
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Образы и прообразы множеств при отображениях






Пусть задана функция и задано множество .

Образом множества А при отображении f называется множество всех , являющихся значениями функции f в точках .

Обозначение: .

В частности, , то есть образом множества задания функции является множество ее значений.

Если множество , то множество A всех значений аргумента х, для которых , называется прообразом множества В при отображении f. Записать кратко определение прообраза можно так:

.

Пример 4 (образы и прообразы множеств при различных отображениях)

1) Множество является образом множества при отображении функцией

Дирихле; множество является прообразом множества при отображении той же функцией;

2)

В — это образ множества А при отображении функцией , A — это прообраз множества B при этом отображении функцией ;

3) найдем образ множества при отображении функцией :

, то есть В — это образ мно- жества А при отображении функцией ;
4) найдем образ множества при отображении функцией .
или — это образ множества А при отображении функцией ;

5) найдем прообраз множества при отображении функцией :

— это прообраз множества В при отображении функцией .

Понятие многозначного отображения

Отображение называется многозначным отображением, если существуют такие, что им соответствуют более одного элемента ,(рис. 32).

Рис. 32

Многозначные функции рассматривать будем пока только в исключительных случаях, поэтому по умолчанию любая функция считается задающей однозначное отображение.







Дата добавления: 2015-10-19; просмотров: 14027. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2023 год . (0.007 сек.) русская версия | украинская версия