Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения для самостоятельной работы. 1. Дано, что . Запишите промежутками и постройте геометрически на координатной прямой множества А, B





1. Дано, что .
Запишите промежутками и постройте геометрически на координатной прямой множества А, B, , , , . Опишите и постройте на координатной плоскости множества и .

 

2. Дано, что .
Запишите и постройте геометрически на координатной прямой множества А, B, .

 

3. Определите элементы следующих множеств:
, ,
, ,
, .

 

4. Постройте множества точек на координатной плоскости XOY:
, .

 

5. Дано множество .

Составьте разбиение множества А на подмножества по признаку делимости его элементов на числа 2 и 5.

 

6. Дано: множество ;

условие (1): х – неположительное число, большее чем -0.5;

условие (2): х – удовлетворяет неравенству .

Составьте разбиение множества Х на подмножества по признаку удовлетворения его элементов условиям (1) и (2). Сделайте иллюстрацию к разбиению с помощью диаграммы Эйлера-Венна и на координатной прямой.

 

Ответы к упражнениям для самостоятельной работы

 

1. ; ; ; ; ; ;  
 
; .  
2. .    
   
3. , ; , ; , .    
4.    
5. , , , .  
6. - множество х, удовлетворяющих условию (1) и не удовлетворяющих условию (2);
  - множество х, удовлетворяющих условию (2) и не удовлетворяющих условию (1);
  - множество х, удовлетворяющих обоим условиям (1) и (2);
  - множество х, не удовлетворяющих ни условию (1), ни условию (2).
 
           

Вопросы для самопроверки

Что такое множество?

Что такое конечное множество?

Что такое бесконечное множество?

Что такое числовое множество?

Что называется равными множествами?

Что называется подмножеством?

Что называется кругами Эйлера, или диаграммами Эйлера-Венна?

Что называется подмножеством?

Что называется объединением множеств А и В?

Что называется пересечением множеств А и В?

Что называется разностью множества А и множества В?

Что называется дополнением к множеству B в множестве А?

Что такое универсальное множество?

Что такое декартово произведение множества А на множество В?

Что такое разбиение множества на подмножества?

Что такое коммутативность операций?

Что такое ассоциативность операций?

Что такое дистрибутивность операций?

Что такое особые случаи результатов операций над множествами?

Что такое законы двойственности?

Глоссарий

ассоциативность операций это…(стр. 10)

бесконечное множество это…(стр. 5)

декартово произведение множества А на множество В это…(стр. 9)

дистрибутивность операций это…(стр. 10)

дополнением к множеству B в множестве называется…(стр. 8)

законы двойственности это…(стр. 10)

коммутативность операций это…(стр. 10)

конечное множество это…(стр. 5)

кругами Эйлера, или диаграммами Эйлера-Венна называется…(стр. 6)

множество это…(стр. 5)

объединением множеств А и В называется…(стр. 7)

особые случаи результатов операций над множествами это…(стр. 10)

пересечением множеств А и В называется…(стр. 8)

подмножеством называется…(стр. 6)

подмножеством называется…(стр. 7)

равными множествами называется…(стр. 6)

разбиение множества на подмножества это…(стр. 9)

разностью множества А и множества В называется…(стр. 8)

универсальное множество это…(стр. 8)

числовое множество это…(стр. 5)

 


§ 2. Множество действительных чисел: определение, геометрическая интерпретация, модуль, стандартные подмножества

Содержание

2.1. Аксиоматическое определение множества действительных чисел. 18

2.2. Модуль действительного числа. 20

2.3. Стандартные подмножества множества действительных чисел ... 21

2.4. Примеры работы на множестве ... 23

2.5. Дискретные и непрерывные множества. 24

2.6. Упражнения для самостоятельной работы.. 25

Вопросы для самопроверки.. 27

Глоссарий 27

 







Дата добавления: 2015-10-19; просмотров: 676. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия