Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные операции над множествами





К основным операциям над множествами относятся объединение, пересечение, разность, дополнение, декартово произведение, разбиение множества на подмножества.

 

1. Объединением множеств А и В называется множество, состоящее из таких и только таких элементов, которые принадлежат хотя бы одному из множеств A или B, (рис. 4).

 

Рис. 4 Определение объединения множеств.

 

Для набора множеств операция объединения определяется так:

.

2. Пересечением множеств А и В называется множество, состоящее из таких и только таких элементов, которые принадлежат обоим множествам A и B, (рис. 5).

Рис. 5 Определение пересечения множеств.

 

Для набора множеств операция пересечения определяется так:

.

3. Разностью множества А и множества В называется множество, состоящее из таких и только таких элементов, которые принадлежат множеству A и не принадлежат множеству B, (рис. 6).

Определение разности множеств;
Рис. 6 .

 

4. Если , то разность называется дополнением к множеству B в множестве А, (рис. 7).

Рис. 7 Определение дополнения к множеству

Замечание (о дополнении в универсальном множестве)

Для нескольких рассматриваемых множеств, состоящих из элементов одной природы, можно ввести так называемое универсальное множество, для которого все рассматриваемые множества являются подмножествами. Например, для числовых множеств универсальным можно считать множество действительных чисел .

Универсальное множество обычно обозначается буквой и на диаграмме Эйлера-Венна изображается прямоугольником. Дополнение к некоторому множеству в универсальном множестве обозначается только штрихом, (рис. 8).

, где U - универсальное множество  

5. Декартово произведение множества А на множество В
Если и , то ,
то есть декартово (или прямое) произведение множества A на множество B состоит из всех возможных упорядоченных пар, у которых первый элемент взят из множества A, а второй – из множества B.

 







Дата добавления: 2015-10-19; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия